ray.data.preprocessors.TorchVisionPreprocessor.fit_transform#
- TorchVisionPreprocessor.fit_transform(ds: Dataset, *, transform_num_cpus: float | None = None, transform_memory: float | None = None, transform_batch_size: int | None = None, transform_concurrency: int | None = None) Dataset#
- Fit this Preprocessor to the Dataset and then transform the Dataset. - Calling it more than once will overwrite all previously fitted state: - preprocessor.fit_transform(A).fit_transform(B)is equivalent to- preprocessor.fit_transform(B).- Parameters:
- ds – Input Dataset. 
- transform_num_cpus – [experimental] The number of CPUs to reserve for each parallel map worker. 
- transform_memory – [experimental] The heap memory in bytes to reserve for each parallel map worker. 
- transform_batch_size – [experimental] The maximum number of rows to return. 
- transform_concurrency – [experimental] The maximum number of Ray workers to use concurrently. 
 
- Returns:
- The transformed Dataset. 
- Return type: