Saving Data#

Ray Data lets you save data in files or other Python objects.

This guide shows you how to:

Writing data to files#

Ray Data writes to local disk and cloud storage.

Writing data to local disk#

To save your Dataset to local disk, call a method like Dataset.write_parquet and specify a local directory with the local:// scheme.

Warning

If your cluster contains multiple nodes and you don’t use local://, Ray Data writes different partitions of data to different nodes.

import ray

ds = ray.data.read_csv("s3://anonymous@ray-example-data/iris.csv")

ds.write_parquet("local:///tmp/iris/")

To write data to formats other than Parquet, read the Input/Output reference.

Writing data to cloud storage#

To save your Dataset to cloud storage, authenticate all nodes with your cloud service provider. Then, call a method like Dataset.write_parquet and specify a URI with the appropriate scheme. URI can point to buckets or folders.

To write data to formats other than Parquet, read the Input/Output reference.

To save data to Amazon S3, specify a URI with the s3:// scheme.

import ray

ds = ray.data.read_csv("s3://anonymous@ray-example-data/iris.csv")

ds.write_parquet("s3://my-bucket/my-folder")

Ray Data relies on PyArrow to authenticate with Amazon S3. For more on how to configure your credentials to be compatible with PyArrow, see their S3 Filesytem docs.

To save data to Google Cloud Storage, install the Filesystem interface to Google Cloud Storage

pip install gcsfs

Then, create a GCSFileSystem and specify a URI with the gcs:// scheme.

import ray

ds = ray.data.read_csv("s3://anonymous@ray-example-data/iris.csv")

filesystem = gcsfs.GCSFileSystem(project="my-google-project")
ds.write_parquet("gcs://my-bucket/my-folder", filesystem=filesystem)

Ray Data relies on PyArrow for authenticaion with Google Cloud Storage. For more on how to configure your credentials to be compatible with PyArrow, see their GCS Filesytem docs.

To save data to Azure Blob Storage, install the Filesystem interface to Azure-Datalake Gen1 and Gen2 Storage

pip install adlfs

Then, create a AzureBlobFileSystem and specify a URI with the az:// scheme.

import ray

ds = ray.data.read_csv("s3://anonymous@ray-example-data/iris.csv")

filesystem = adlfs.AzureBlobFileSystem(account_name="azureopendatastorage")
ds.write_parquet("az://my-bucket/my-folder", filesystem=filesystem)

Ray Data relies on PyArrow for authenticaion with Azure Blob Storage. For more on how to configure your credentials to be compatible with PyArrow, see their fsspec-compatible filesystems docs.

Writing data to NFS#

To save your Dataset to NFS file systems, call a method like Dataset.write_parquet and specify a mounted directory.

import ray

ds = ray.data.read_csv("s3://anonymous@ray-example-data/iris.csv")

ds.write_parquet("/mnt/cluster_storage/iris")

To write data to formats other than Parquet, read the Input/Output reference.

Changing the number of output files#

When you call a write method, Ray Data writes your data to several files. To control the number of output files, configure num_rows_per_file.

Note

num_rows_per_file is a hint, not a strict limit. Ray Data might write more or fewer rows to each file.

import os
import ray

ds = ray.data.read_csv("s3://anonymous@ray-example-data/iris.csv")
ds.write_csv("/tmp/few_files/", num_rows_per_file=75)

print(os.listdir("/tmp/few_files/"))
['0_000001_000000.csv', '0_000000_000000.csv', '0_000002_000000.csv']

Converting Datasets to other Python libraries#

Converting Datasets to pandas#

To convert a Dataset to a pandas DataFrame, call Dataset.to_pandas(). Your data must fit in memory on the head node.

import ray

ds = ray.data.read_csv("s3://anonymous@ray-example-data/iris.csv")

df = ds.to_pandas()
print(df)
     sepal length (cm)  sepal width (cm)  ...  petal width (cm)  target
0                  5.1               3.5  ...               0.2       0
1                  4.9               3.0  ...               0.2       0
2                  4.7               3.2  ...               0.2       0
3                  4.6               3.1  ...               0.2       0
4                  5.0               3.6  ...               0.2       0
..                 ...               ...  ...               ...     ...
145                6.7               3.0  ...               2.3       2
146                6.3               2.5  ...               1.9       2
147                6.5               3.0  ...               2.0       2
148                6.2               3.4  ...               2.3       2
149                5.9               3.0  ...               1.8       2
<BLANKLINE>
[150 rows x 5 columns]

Converting Datasets to distributed DataFrames#

Ray Data interoperates with distributed data processing frameworks like Dask, Spark, Modin, and Mars.

To convert a Dataset to a Dask DataFrame, call Dataset.to_dask().

import ray

ds = ray.data.read_csv("s3://anonymous@ray-example-data/iris.csv")

df = ds.to_dask()

To convert a Dataset to a Spark DataFrame, call Dataset.to_spark().

import ray
import raydp

spark = raydp.init_spark(
    app_name = "example",
    num_executors = 1,
    executor_cores = 4,
    executor_memory = "512M"
)

ds = ray.data.read_csv("s3://anonymous@ray-example-data/iris.csv")
df = ds.to_spark(spark)

To convert a Dataset to a Modin DataFrame, call Dataset.to_modin().

import ray

ds = ray.data.read_csv("s3://anonymous@ray-example-data/iris.csv")

mdf = ds.to_modin()

To convert a Dataset from a Mars DataFrame, call Dataset.to_mars().

import ray

ds = ray.data.read_csv("s3://anonymous@ray-example-data/iris.csv")

mdf = ds.to_mars()