DataIterator API#

DataIterator#

class ray.data.DataIterator[source]#

An iterator for reading records from a Dataset.

For Datasets, each iteration call represents a complete read of all items in the Dataset.

If using Ray Train, each trainer actor should get its own iterator by calling ray.train.get_dataset_shard("train").

Examples

>>> import ray
>>> ds = ray.data.range(5)
>>> ds
Dataset(num_rows=5, schema={id: int64})
>>> ds.iterator()
DataIterator(Dataset(num_rows=5, schema={id: int64}))

DataIterator.iter_batches

Return a batched iterable over the dataset.

DataIterator.iter_rows

Return a local row iterable over the dataset.

DataIterator.iter_torch_batches

Return a batched iterable of Torch Tensors over the dataset.

DataIterator.materialize

Execute and materialize this data iterator into object store memory.

DataIterator.stats

Returns a string containing execution timing information.

DataIterator.to_tf

Return a TF Dataset over this dataset.