How to write tests#
Note
Disclaimer: There are no hard rules in software engineering. Use your judgment when applying these.
Flaky or brittle tests (the kind that break when assumptions shift) slow development. Nobody likes getting stuck on a PR because a test failed for reasons unrelated to their change.
This guide is a collection of practices to help you write tests that support the Ray Data project, not slow it down.
General good practices#
Prefer unit tests over integration tests#
Unit tests give faster feedback and make it easier to pinpoint failures. They run in milliseconds, not seconds, and don’t depend on Ray clusters, external systems, or timing. This keeps the test suite fast, reliable, and easy to maintain.
Note
Put unit tests in python/ray/data/tests/unit.
Use fixtures, skip try-finally#
Fixtures make tests cleaner, more reusable, and better isolated. They’re the right tool
for setup and teardown, especially for things like monkeypatch.
try-finally works, but fixtures make intent clearer and avoid boilerplate.
Original code
def test_dynamic_block_split(ray_start_regular_shared):
ctx = ray.data.context.DataContext.get_current()
original_target_max_block_size = ctx.target_max_block_size
ctx.target_max_block_size = 1
try:
...
finally:
ctx.target_max_block_size = original_target_max_block_size
Better
def test_dynamic_block_split(ray_start_regular_shared, restore_data_context):
ctx = ray.data.context.DataContext.get_current()
target_max_block_size = ctx.target_max_block_size
... # No need for try-finally
Ray-specific practices#
Don’t assume Datasets produce outputs in a specific order#
Unless you set preserve_order=True in the DataContext, Ray Data doesn’t guarantee
an output order. If your test relies on order without explicitly asking for it, you’re
setting yourself up for brittle failures.
Original code
ds_dfs = []
for path in os.listdir(out_path):
assert path.startswith("data_") and path.endswith(".parquet")
ds_dfs.append(pd.read_parquet(os.path.join(out_path, path)))
ds_df = pd.concat(ds_dfs).reset_index(drop=True)
df = pd.concat([df1, df2]).reset_index(drop=True)
assert ds_df.equals(df)
Better
from ray.data._internal.util import rows_same
actual_data = pd.read_parquet(out_path)
expected_data = pd.concat([df1, df2]
assert rows_same(actual_data, expected_data)
Tip
Use the ray.data._internal.util.rows_same utility function to compare pandas
DataFrames for equality while ignoring indices and order.
Avoid testing against repr outputs to validate specific data#
repr output isn’t part of any interface contract — it can change at any time.
Besides, tests that assert against repr often hide the real intent: are you trying to
check the data, or just how it happens to print? Be explicit about what you care about.
Original code
assert str(ds) == "Dataset(num_rows=6, schema={one: int64, two: string})", ds
Better
assert ds.schema() == Schema(pa.schema({"one": pa.int64(), "two": pa.string()}))
assert ds.count() == 6
Avoid assumptions about the number or size of blocks#
Unless you’re testing an API like repartition, don’t lock your test to a specific
number or size of blocks. Both can change depending on the implementation or the cluster
config — and that’s usually fine.
Original code
ds = ray.data.read_parquet(paths + [txt_path], filesystem=fs)
assert ds._plan.initial_num_blocks() == 2 # Where does 2 come from?
assert rows_same(ds.to_pandas(), expected_data)
Better
ds = ray.data.read_parquet(paths + [txt_path], filesystem=fs)
# Assertion about number of blocks has been removed.
assert rows_same(ds.to_pandas(), expected_data)
Original code
ds2 = ds.repartition(5)
assert ds2._plan.initial_num_blocks() == 5
assert ds2._block_num_rows() == [10, 10, 0, 0, 0] # Magic numbers?
Better
ds2 = ds.repartition(5)
assert sum(len(bundle.blocks) for bundle in ds.iter_internal_ref_bundles()) == 5
# Assertion about the number of rows in each block has been removed.
Avoid testing that the DAG looks a particular way#
The operators in the execution plan can shift over time as the implementation evolves. Unless you’re specifically testing optimization rules or working at the operator level, tests shouldn’t expect a particular DAG structure.
Original code
# Check that metadata fetch is included in stats.
assert "FromArrow" in ds.stats()
# Underlying implementation uses `FromArrow` operator
assert ds._plan._logical_plan.dag.name == "FromArrow"
Better
# (Assertions removed).