Using Spark on Ray (RayDP)#

RayDP combines your Spark and Ray clusters, making it easy to do large scale data processing using the PySpark API and seemlessly use that data to train your models using TensorFlow and PyTorch.

For more information and examples, see the RayDP Github page: oap-project/raydp

Installing RayDP#

RayDP can be installed from PyPI and supports PySpark 3.0 and 3.1.

Note

RayDP requires ray >= 1.2.0

Note

In order to run Spark, the head and worker nodes will need Java installed.

Creating a Spark Session#

To create a spark session, call raydp.init_spark

For example,

import ray
import raydp

ray.init()
spark = raydp.init_spark(
  app_name = "example",
  num_executors = 10,
  executor_cores = 64,
  executor_memory = "256GB"
)

Deep Learning with a Spark DataFrame#

Training a Spark DataFrame with TensorFlow#

raydp.tf.TFEstimator provides an API for training with TensorFlow.

from pyspark.sql.functions import col
df = spark.range(1, 1000)
# calculate z = x + 2y + 1000
df = df.withColumn("x", col("id")*2)\
  .withColumn("y", col("id") + 200)\
  .withColumn("z", col("x") + 2*col("y") + 1000)

from raydp.utils import random_split
train_df, test_df = random_split(df, [0.7, 0.3])

# TensorFlow code
from tensorflow import keras
input_1 = keras.Input(shape=(1,))
input_2 = keras.Input(shape=(1,))

concatenated = keras.layers.concatenate([input_1, input_2])
output = keras.layers.Dense(1, activation='sigmoid')(concatenated)
model = keras.Model(inputs=[input_1, input_2],
                    outputs=output)

optimizer = keras.optimizers.Adam(0.01)
loss = keras.losses.MeanSquaredError()

from raydp.tf import TFEstimator
estimator = TFEstimator(
  num_workers=2,
  model=model,
  optimizer=optimizer,
  loss=loss,
  metrics=["accuracy", "mse"],
  feature_columns=["x", "y"],
  label_column="z",
  batch_size=1000,
  num_epochs=2,
  use_gpu=False,
  config={"fit_config": {"steps_per_epoch": 2}})

estimator.fit_on_spark(train_df, test_df)

tensorflow_model = estimator.get_model()

estimator.shutdown()

Training a Spark DataFrame with PyTorch#

Similarly, raydp.torch.TorchEstimator provides an API for training with PyTorch.

from pyspark.sql.functions import col
df = spark.range(1, 1000)
# calculate z = x + 2y + 1000
df = df.withColumn("x", col("id")*2)\
  .withColumn("y", col("id") + 200)\
  .withColumn("z", col("x") + 2*col("y") + 1000)

from raydp.utils import random_split
train_df, test_df = random_split(df, [0.7, 0.3])

# PyTorch Code
import torch
class LinearModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel, self).__init__()
        self.linear = torch.nn.Linear(2, 1)

    def forward(self, x, y):
        x = torch.cat([x, y], dim=1)
        return self.linear(x)

model = LinearModel()
optimizer = torch.optim.Adam(model.parameters())
loss_fn = torch.nn.MSELoss()

def lr_scheduler_creator(optimizer, config):
    return torch.optim.lr_scheduler.MultiStepLR(
      optimizer, milestones=[150, 250, 350], gamma=0.1)

# You can use the RayDP Estimator API or libraries like Ray Train for distributed training.
from raydp.torch import TorchEstimator
estimator = TorchEstimator(
  num_workers = 2,
  model = model,
  optimizer = optimizer,
  loss = loss_fn,
  lr_scheduler_creator=lr_scheduler_creator,
  feature_columns = ["x", "y"],
  label_column = ["z"],
  batch_size = 1000,
  num_epochs = 2
)

estimator.fit_on_spark(train_df, test_df)

pytorch_model = estimator.get_model()

estimator.shutdown()