ray.rllib.models.distributions.Distribution.rsample#
- abstract Distribution.rsample(*, sample_shape: Tuple[int, ...] = None, return_logp: bool = False, **kwargs) numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor | Tuple[numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor, numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor] [source]#
Draw a re-parameterized sample from the action distribution.
If this method is implemented, we can take gradients of samples w.r.t. the distribution parameters.
- Parameters:
sample_shape – The shape of the sample to draw.
return_logp – Whether to return the logp of the sampled values.
**kwargs – Forward compatibility placeholder.
- Returns:
The sampled values. If return_logp is True, returns a tuple of the sampled values and its logp.