Using MLflow with Tune#
MLflow is an open source platform to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry. It currently offers four components, including MLflow Tracking to record and query experiments, including code, data, config, and results.
Ray Tune currently offers two lightweight integrations for MLflow Tracking. One is the MLflowLoggerCallback, which automatically logs metrics reported to Tune to the MLflow Tracking API.
The other one is the setup_mlflow function, which can be
used with the function API. It automatically
initializes the MLflow API with Tune’s training information and creates a run for each Tune trial.
Then within your training function, you can just use the
MLflow like you would normally do, e.g. using mlflow.log_metrics()
or even mlflow.autolog()
to log to your training process.
Running an MLflow Example#
In the following example we’re going to use both of the above methods, namely the MLflowLoggerCallback
and
the setup_mlflow
function to log metrics.
Let’s start with a few crucial imports:
import os
import tempfile
import time
import mlflow
from ray import train, tune
from ray.air.integrations.mlflow import MLflowLoggerCallback, setup_mlflow
Next, let’s define an easy training function (a Tune Trainable
) that iteratively computes steps and evaluates
intermediate scores that we report to Tune.
def evaluation_fn(step, width, height):
return (0.1 + width * step / 100) ** (-1) + height * 0.1
def train_function(config):
width, height = config["width"], config["height"]
for step in range(config.get("steps", 100)):
# Iterative training function - can be any arbitrary training procedure
intermediate_score = evaluation_fn(step, width, height)
# Feed the score back to Tune.
train.report({"iterations": step, "mean_loss": intermediate_score})
time.sleep(0.1)
Given an MLFlow tracking URI, you can now simply use the MLflowLoggerCallback
as a callback
argument to
your RunConfig()
:
def tune_with_callback(mlflow_tracking_uri, finish_fast=False):
tuner = tune.Tuner(
train_function,
tune_config=tune.TuneConfig(num_samples=5),
run_config=train.RunConfig(
name="mlflow",
callbacks=[
MLflowLoggerCallback(
tracking_uri=mlflow_tracking_uri,
experiment_name="mlflow_callback_example",
save_artifact=True,
)
],
),
param_space={
"width": tune.randint(10, 100),
"height": tune.randint(0, 100),
"steps": 5 if finish_fast else 100,
},
)
results = tuner.fit()
To use the setup_mlflow
utility, you simply call this function in your training function.
Note that we also use mlflow.log_metrics(...)
to log metrics to MLflow.
Otherwise, this version of our training function is identical to its original.
def train_function_mlflow(config):
tracking_uri = config.pop("tracking_uri", None)
setup_mlflow(
config,
experiment_name="setup_mlflow_example",
tracking_uri=tracking_uri,
)
# Hyperparameters
width, height = config["width"], config["height"]
for step in range(config.get("steps", 100)):
# Iterative training function - can be any arbitrary training procedure
intermediate_score = evaluation_fn(step, width, height)
# Log the metrics to mlflow
mlflow.log_metrics(dict(mean_loss=intermediate_score), step=step)
# Feed the score back to Tune.
train.report({"iterations": step, "mean_loss": intermediate_score})
time.sleep(0.1)
With this new objective function ready, you can now create a Tune run with it as follows:
def tune_with_setup(mlflow_tracking_uri, finish_fast=False):
# Set the experiment, or create a new one if does not exist yet.
mlflow.set_tracking_uri(mlflow_tracking_uri)
mlflow.set_experiment(experiment_name="setup_mlflow_example")
tuner = tune.Tuner(
train_function_mlflow,
tune_config=tune.TuneConfig(num_samples=5),
run_config=train.RunConfig(
name="mlflow",
),
param_space={
"width": tune.randint(10, 100),
"height": tune.randint(0, 100),
"steps": 5 if finish_fast else 100,
"tracking_uri": mlflow.get_tracking_uri(),
},
)
results = tuner.fit()
If you hapen to have an MLFlow tracking URI, you can set it below in the mlflow_tracking_uri
variable and set
smoke_test=False
.
Otherwise, you can just run a quick test of the tune_function
and tune_decorated
functions without using MLflow.
smoke_test = True
if smoke_test:
mlflow_tracking_uri = os.path.join(tempfile.gettempdir(), "mlruns")
else:
mlflow_tracking_uri = "<MLFLOW_TRACKING_URI>"
tune_with_callback(mlflow_tracking_uri, finish_fast=smoke_test)
if not smoke_test:
df = mlflow.search_runs(
[mlflow.get_experiment_by_name("mlflow_callback_example").experiment_id]
)
print(df)
tune_with_setup(mlflow_tracking_uri, finish_fast=smoke_test)
if not smoke_test:
df = mlflow.search_runs(
[mlflow.get_experiment_by_name("setup_mlflow_example").experiment_id]
)
print(df)
2022-12-22 10:37:53,580 INFO worker.py:1542 -- Started a local Ray instance. View the dashboard at http://127.0.0.1:8265
Tune Status
Current time: | 2022-12-22 10:38:04 |
Running for: | 00:00:06.73 |
Memory: | 10.4/16.0 GiB |
System Info
Using FIFO scheduling algorithm.Resources requested: 0/16 CPUs, 0/0 GPUs, 0.0/4.03 GiB heap, 0.0/2.0 GiB objects
Trial Status
Trial name | status | loc | height | width | loss | iter | total time (s) | iterations | neg_mean_loss |
---|---|---|---|---|---|---|---|---|---|
train_function_b275b_00000 | TERMINATED | 127.0.0.1:801 | 66 | 36 | 7.24935 | 5 | 0.587302 | 4 | -7.24935 |
train_function_b275b_00001 | TERMINATED | 127.0.0.1:813 | 33 | 35 | 3.96667 | 5 | 0.507423 | 4 | -3.96667 |
train_function_b275b_00002 | TERMINATED | 127.0.0.1:814 | 75 | 29 | 8.29365 | 5 | 0.518995 | 4 | -8.29365 |
train_function_b275b_00003 | TERMINATED | 127.0.0.1:815 | 28 | 63 | 3.18168 | 5 | 0.567739 | 4 | -3.18168 |
train_function_b275b_00004 | TERMINATED | 127.0.0.1:816 | 20 | 18 | 3.21951 | 5 | 0.526536 | 4 | -3.21951 |
Trial Progress
Trial name | date | done | episodes_total | experiment_id | experiment_tag | hostname | iterations | iterations_since_restore | mean_loss | neg_mean_loss | node_ip | pid | time_since_restore | time_this_iter_s | time_total_s | timestamp | timesteps_since_restore | timesteps_total | training_iteration | trial_id | warmup_time |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
train_function_b275b_00000 | 2022-12-22_10-38-01 | True | 28feaa4dd8ab4edab810e8109e77502e | 0_height=66,width=36 | kais-macbook-pro.anyscale.com.beta.tailscale.net | 4 | 5 | 7.24935 | -7.24935 | 127.0.0.1 | 801 | 0.587302 | 0.126818 | 0.587302 | 1671705481 | 0 | 5 | b275b_00000 | 0.00293493 | ||
train_function_b275b_00001 | 2022-12-22_10-38-04 | True | 245010d0c3d0439ebfb664764ae9db3c | 1_height=33,width=35 | kais-macbook-pro.anyscale.com.beta.tailscale.net | 4 | 5 | 3.96667 | -3.96667 | 127.0.0.1 | 813 | 0.507423 | 0.122086 | 0.507423 | 1671705484 | 0 | 5 | b275b_00001 | 0.00553799 | ||
train_function_b275b_00002 | 2022-12-22_10-38-04 | True | 898afbf9b906448c980f399c72a2324c | 2_height=75,width=29 | kais-macbook-pro.anyscale.com.beta.tailscale.net | 4 | 5 | 8.29365 | -8.29365 | 127.0.0.1 | 814 | 0.518995 | 0.123554 | 0.518995 | 1671705484 | 0 | 5 | b275b_00002 | 0.0040431 | ||
train_function_b275b_00003 | 2022-12-22_10-38-04 | True | 03a4476f82734642b6ab0a5040ca58f8 | 3_height=28,width=63 | kais-macbook-pro.anyscale.com.beta.tailscale.net | 4 | 5 | 3.18168 | -3.18168 | 127.0.0.1 | 815 | 0.567739 | 0.125471 | 0.567739 | 1671705484 | 0 | 5 | b275b_00003 | 0.00406194 | ||
train_function_b275b_00004 | 2022-12-22_10-38-04 | True | ff8c7c55ce6e404f9b0552c17f7a0c40 | 4_height=20,width=18 | kais-macbook-pro.anyscale.com.beta.tailscale.net | 4 | 5 | 3.21951 | -3.21951 | 127.0.0.1 | 816 | 0.526536 | 0.123327 | 0.526536 | 1671705484 | 0 | 5 | b275b_00004 | 0.00332022 |
2022-12-22 10:38:04,477 INFO tune.py:772 -- Total run time: 7.99 seconds (6.71 seconds for the tuning loop).
Tune Status
Current time: | 2022-12-22 10:38:11 |
Running for: | 00:00:07.00 |
Memory: | 10.7/16.0 GiB |
System Info
Using FIFO scheduling algorithm.Resources requested: 0/16 CPUs, 0/0 GPUs, 0.0/4.03 GiB heap, 0.0/2.0 GiB objects
Trial Status
Trial name | status | loc | height | width | loss | iter | total time (s) | iterations | neg_mean_loss |
---|---|---|---|---|---|---|---|---|---|
train_function_mlflow_b73bd_00000 | TERMINATED | 127.0.0.1:842 | 37 | 68 | 4.05461 | 5 | 0.750435 | 4 | -4.05461 |
train_function_mlflow_b73bd_00001 | TERMINATED | 127.0.0.1:853 | 50 | 20 | 6.11111 | 5 | 0.652748 | 4 | -6.11111 |
train_function_mlflow_b73bd_00002 | TERMINATED | 127.0.0.1:854 | 38 | 83 | 4.0924 | 5 | 0.6513 | 4 | -4.0924 |
train_function_mlflow_b73bd_00003 | TERMINATED | 127.0.0.1:855 | 15 | 93 | 1.76178 | 5 | 0.650586 | 4 | -1.76178 |
train_function_mlflow_b73bd_00004 | TERMINATED | 127.0.0.1:856 | 75 | 43 | 8.04945 | 5 | 0.656046 | 4 | -8.04945 |
Trial Progress
Trial name | date | done | episodes_total | experiment_id | experiment_tag | hostname | iterations | iterations_since_restore | mean_loss | neg_mean_loss | node_ip | pid | time_since_restore | time_this_iter_s | time_total_s | timestamp | timesteps_since_restore | timesteps_total | training_iteration | trial_id | warmup_time |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
train_function_mlflow_b73bd_00000 | 2022-12-22_10-38-08 | True | 62703cfe82e54d74972377fbb525b000 | 0_height=37,width=68 | kais-macbook-pro.anyscale.com.beta.tailscale.net | 4 | 5 | 4.05461 | -4.05461 | 127.0.0.1 | 842 | 0.750435 | 0.108625 | 0.750435 | 1671705488 | 0 | 5 | b73bd_00000 | 0.0030272 | ||
train_function_mlflow_b73bd_00001 | 2022-12-22_10-38-11 | True | 03ea89852115465392ed318db8021614 | 1_height=50,width=20 | kais-macbook-pro.anyscale.com.beta.tailscale.net | 4 | 5 | 6.11111 | -6.11111 | 127.0.0.1 | 853 | 0.652748 | 0.110796 | 0.652748 | 1671705491 | 0 | 5 | b73bd_00001 | 0.00303078 | ||
train_function_mlflow_b73bd_00002 | 2022-12-22_10-38-11 | True | 3731fc2966f9453ba58c650d89035ab4 | 2_height=38,width=83 | kais-macbook-pro.anyscale.com.beta.tailscale.net | 4 | 5 | 4.0924 | -4.0924 | 127.0.0.1 | 854 | 0.6513 | 0.108578 | 0.6513 | 1671705491 | 0 | 5 | b73bd_00002 | 0.00310016 | ||
train_function_mlflow_b73bd_00003 | 2022-12-22_10-38-11 | True | fb35841742b348b9912d10203c730f1e | 3_height=15,width=93 | kais-macbook-pro.anyscale.com.beta.tailscale.net | 4 | 5 | 1.76178 | -1.76178 | 127.0.0.1 | 855 | 0.650586 | 0.109097 | 0.650586 | 1671705491 | 0 | 5 | b73bd_00003 | 0.0576491 | ||
train_function_mlflow_b73bd_00004 | 2022-12-22_10-38-11 | True | 6d3cbf9ecc3446369e607ff78c67bc29 | 4_height=75,width=43 | kais-macbook-pro.anyscale.com.beta.tailscale.net | 4 | 5 | 8.04945 | -8.04945 | 127.0.0.1 | 856 | 0.656046 | 0.109869 | 0.656046 | 1671705491 | 0 | 5 | b73bd_00004 | 0.00265694 |
2022-12-22 10:38:11,514 INFO tune.py:772 -- Total run time: 7.01 seconds (6.98 seconds for the tuning loop).
This completes our Tune and MLflow walk-through. In the following sections you can find more details on the API of the Tune-MLflow integration.
MLflow AutoLogging#
You can also check out here for an example on how you can leverage MLflow auto-logging, in this case with Pytorch Lightning
MLflow Logger API#
- class ray.air.integrations.mlflow.MLflowLoggerCallback(tracking_uri: str | None = None, *, registry_uri: str | None = None, experiment_name: str | None = None, tags: Dict | None = None, tracking_token: str | None = None, save_artifact: bool = False)[source]
MLflow Logger to automatically log Tune results and config to MLflow.
MLflow (https://mlflow.org) Tracking is an open source library for recording and querying experiments. This Ray Tune
LoggerCallback
sends information (config parameters, training results & metrics, and artifacts) to MLflow for automatic experiment tracking.Keep in mind that the callback will open an MLflow session on the driver and not on the trainable. Therefore, it is not possible to call MLflow functions like
mlflow.log_figure()
inside the trainable as there is no MLflow session on the trainable. For more fine grained control, useray.air.integrations.mlflow.setup_mlflow()
.- Parameters:
tracking_uri – The tracking URI for where to manage experiments and runs. This can either be a local file path or a remote server. This arg gets passed directly to mlflow initialization. When using Tune in a multi-node setting, make sure to set this to a remote server and not a local file path.
registry_uri – The registry URI that gets passed directly to mlflow initialization.
experiment_name – The experiment name to use for this Tune run. If the experiment with the name already exists with MLflow, it will be reused. If not, a new experiment will be created with that name.
tags – An optional dictionary of string keys and values to set as tags on the run
tracking_token – Tracking token used to authenticate with MLflow.
save_artifact – If set to True, automatically save the entire contents of the Tune local_dir as an artifact to the corresponding run in MlFlow.
Example:
from ray.air.integrations.mlflow import MLflowLoggerCallback tags = { "user_name" : "John", "git_commit_hash" : "abc123"} tune.run( train_fn, config={ # define search space here "parameter_1": tune.choice([1, 2, 3]), "parameter_2": tune.choice([4, 5, 6]), }, callbacks=[MLflowLoggerCallback( experiment_name="experiment1", tags=tags, save_artifact=True)])
MLflow setup API#
- ray.air.integrations.mlflow.setup_mlflow(config: Dict | None = None, tracking_uri: str | None = None, registry_uri: str | None = None, experiment_id: str | None = None, experiment_name: str | None = None, tracking_token: str | None = None, artifact_location: str | None = None, run_name: str | None = None, create_experiment_if_not_exists: bool = False, tags: Dict | None = None, rank_zero_only: bool = True) ModuleType | _NoopModule [source]
Set up a MLflow session.
This function can be used to initialize an MLflow session in a (distributed) training or tuning run. The session will be created on the trainable.
By default, the MLflow experiment ID is the Ray trial ID and the MLlflow experiment name is the Ray trial name. These settings can be overwritten by passing the respective keyword arguments.
The
config
dict is automatically logged as the run parameters (excluding the mlflow settings).In distributed training with Ray Train, only the zero-rank worker will initialize mlflow. All other workers will return a noop client, so that logging is not duplicated in a distributed run. This can be disabled by passing
rank_zero_only=False
, which will then initialize mlflow in every training worker.This function will return the
mlflow
module or a noop module for non-rank zero workersif rank_zero_only=True
. By usingmlflow = setup_mlflow(config)
you can ensure that only the rank zero worker calls the mlflow API.- Parameters:
config – Configuration dict to be logged to mlflow as parameters.
tracking_uri – The tracking URI for MLflow tracking. If using Tune in a multi-node setting, make sure to use a remote server for tracking.
registry_uri – The registry URI for the MLflow model registry.
experiment_id – The id of an already created MLflow experiment. All logs from all trials in
tune.Tuner()
will be reported to this experiment. If this is not provided or the experiment with this id does not exist, you must provide an``experiment_name``. This parameter takes precedence overexperiment_name
.experiment_name – The name of an already existing MLflow experiment. All logs from all trials in
tune.Tuner()
will be reported to this experiment. If this is not provided, you must provide a validexperiment_id
.tracking_token – A token to use for HTTP authentication when logging to a remote tracking server. This is useful when you want to log to a Databricks server, for example. This value will be used to set the MLFLOW_TRACKING_TOKEN environment variable on all the remote training processes.
artifact_location – The location to store run artifacts. If not provided, MLFlow picks an appropriate default. Ignored if experiment already exists.
run_name – Name of the new MLflow run that will be created. If not set, will default to the
experiment_name
.create_experiment_if_not_exists – Whether to create an experiment with the provided name if it does not already exist. Defaults to False.
tags – Tags to set for the new run.
rank_zero_only – If True, will return an initialized session only for the rank 0 worker in distributed training. If False, will initialize a session for all workers. Defaults to True.
Example
Per default, you can just call
setup_mlflow
and continue to use MLflow like you would normally do:from ray.air.integrations.mlflow import setup_mlflow def training_loop(config): mlflow = setup_mlflow(config) # ... mlflow.log_metric(key="loss", val=0.123, step=0)
In distributed data parallel training, you can utilize the return value of
setup_mlflow
. This will make sure it is only invoked on the first worker in distributed training runs.from ray.air.integrations.mlflow import setup_mlflow def training_loop(config): mlflow = setup_mlflow(config) # ... mlflow.log_metric(key="loss", val=0.123, step=0)
You can also use MlFlow’s autologging feature if using a training framework like Pytorch Lightning, XGBoost, etc. More information can be found here (https://mlflow.org/docs/latest/tracking.html#automatic-logging).
from ray.air.integrations.mlflow import setup_mlflow def train_fn(config): mlflow = setup_mlflow(config) mlflow.autolog() xgboost_results = xgb.train(config, ...)
PublicAPI (alpha): This API is in alpha and may change before becoming stable.
More MLflow Examples#
MLflow PyTorch Lightning Example: Example for using MLflow and Pytorch Lightning with Ray Tune.