Source code for ray.train._internal.data_config

import copy
from collections import defaultdict
from typing import TYPE_CHECKING, Dict, List, Literal, Optional, Union

from ray.actor import ActorHandle
from ray.util.annotations import DeveloperAPI, PublicAPI

if TYPE_CHECKING:
    from ray.data import DataIterator, Dataset, ExecutionOptions, NodeIdStr


@PublicAPI(stability="stable")
class DataConfig:
    """Class responsible for configuring Train dataset preprocessing.

    For advanced use cases, this class can be subclassed and the `configure()` method
    overridden for custom data preprocessing.
    """

[docs] def __init__( self, datasets_to_split: Union[Literal["all"], List[str]] = "all", execution_options: Optional[ Union["ExecutionOptions", Dict[str, "ExecutionOptions"]] ] = None, enable_shard_locality: bool = True, ): """Construct a DataConfig. Args: datasets_to_split: Specifies which datasets should be split among workers. Can be set to "all" or a list of dataset names. Defaults to "all", i.e. split all datasets. execution_options: The execution options to pass to Ray Data. Can be either: 1. A single ExecutionOptions object that is applied to all datasets. 2. A dict mapping dataset names to ExecutionOptions. If a dataset name is not in the dict, it defaults to ``DataConfig.default_ingest_options()``. By default, the options are optimized for data ingest. When overriding, base your options off ``DataConfig.default_ingest_options()``. enable_shard_locality: If true, dataset sharding across Train workers will consider locality to minimize cross-node data transfer. Enabled by default. """ from ray.data import ExecutionOptions if isinstance(datasets_to_split, list) or datasets_to_split == "all": self._datasets_to_split = datasets_to_split else: raise TypeError( "`datasets_to_split` should be a 'all' or a list of strings of " "dataset names. Received " f"{type(datasets_to_split).__name__} with value {datasets_to_split}." ) default_execution_options = DataConfig.default_ingest_options() if isinstance(execution_options, ExecutionOptions): default_execution_options = execution_options # If None, all datasets will use the default ingest options. self._execution_options: Dict[str, "ExecutionOptions"] = defaultdict( lambda: copy.deepcopy(default_execution_options) ) if isinstance(execution_options, dict): self._execution_options.update(execution_options) self._enable_shard_locality = enable_shard_locality self._num_train_cpus = 0.0 self._num_train_gpus = 0.0
[docs] def set_train_total_resources(self, num_train_cpus: float, num_train_gpus: float): """Set the total number of CPUs and GPUs used by training. If CPU or GPU resource limits are not set, they will be set to the total cluster resources minus the resources used by training. """ # TODO: We may also include other resources besides CPU and GPU. self._num_train_cpus = num_train_cpus self._num_train_gpus = num_train_gpus
def _get_execution_options(self, dataset_name: str) -> "ExecutionOptions": """Return a copy of the configured execution options for a given dataset name.""" return copy.deepcopy(self._execution_options[dataset_name])
[docs] @DeveloperAPI def configure( self, datasets: Dict[str, "Dataset"], world_size: int, worker_handles: Optional[List[ActorHandle]], worker_node_ids: Optional[List["NodeIdStr"]], **kwargs, ) -> List[Dict[str, "DataIterator"]]: """Configure how Train datasets should be assigned to workers. Args: datasets: The datasets dict passed to Train by the user. world_size: The number of Train workers in total. worker_handles: The actor handles of the Train workers. worker_node_ids: The node ids of the Train workers. kwargs: Forwards compatibility placeholder. Returns: A list of dataset splits for each worker. The size of the list must be equal to `world_size`. Each element of the list contains the assigned `DataIterator` instances by name for the worker. """ from ray.data._internal.execution.interfaces.execution_options import ( ExecutionResources, ) output = [{} for _ in range(world_size)] for dataset_name, dataset in datasets.items(): if dataset.name is None: dataset.set_name(dataset_name) if self._datasets_to_split == "all": datasets_to_split = set(datasets.keys()) else: datasets_to_split = set(self._datasets_to_split) locality_hints = worker_node_ids if self._enable_shard_locality else None for name, ds in datasets.items(): execution_options = self._get_execution_options(name) if execution_options.is_resource_limits_default(): # If "resource_limits" is not overridden by the user, # add training-reserved resources to Data's exclude_resources. execution_options.exclude_resources = ( execution_options.exclude_resources.add( ExecutionResources( cpu=self._num_train_cpus, gpu=self._num_train_gpus ) ) ) ds = ds.copy(ds) ds.context.execution_options = execution_options if name in datasets_to_split: for i, split in enumerate( ds.streaming_split( world_size, equal=True, locality_hints=locality_hints ) ): output[i][name] = split else: for i in range(world_size): output[i][name] = ds.iterator() return output
[docs] @staticmethod def default_ingest_options() -> "ExecutionOptions": """The default Ray Data options used for data ingest. By default, configurations are carried over from what is already set in DataContext. """ from ray.data import ExecutionOptions from ray.data.context import DataContext ctx = DataContext.get_current() return ExecutionOptions( # TODO(hchen): Re-enable `locality_with_output` by default after fixing # https://github.com/ray-project/ray/issues/40607 locality_with_output=ctx.execution_options.locality_with_output, resource_limits=ctx.execution_options.resource_limits, exclude_resources=ctx.execution_options.exclude_resources, preserve_order=ctx.execution_options.preserve_order, verbose_progress=ctx.execution_options.verbose_progress, )