Source code for ray.experimental.gpu_object_manager.tensor_transport_manager
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import TYPE_CHECKING, List, Optional, Tuple
if TYPE_CHECKING:
import torch
import ray
# NOTE: This is a public facing abstract interface for custom tensor transports.
# Be sure to update the direct-transport docs when making changes to this interface, especially if changing the path to the file.
@dataclass
class CommunicatorMetadata:
"""Metadata for the communicator."""
@dataclass
class TensorTransportMetadata:
"""Metadata for tensors stored in the GPU object store.
Args:
tensor_meta: A list of tuples, each containing the shape and dtype of a tensor.
tensor_device: The device of the tensor. Currently, we require all tensors in the
list have the same device type.
"""
tensor_meta: List[Tuple["torch.Size", "torch.dtype"]]
tensor_device: Optional["torch.device"] = None
[docs]
class TensorTransportManager(ABC):
"""
Interface with which to implement custom tensor transports.
"""
[docs]
@abstractmethod
def tensor_transport_backend(self) -> str:
"""The tensor transport backend, e.g., NCCL.
Returns:
str: The backend of the tensor transport.
"""
[docs]
@staticmethod
@abstractmethod
def is_one_sided() -> bool:
"""Whether the backend is one-sided.
Returns:
bool: True if the backend is one-sided, False otherwise.
"""
[docs]
@staticmethod
@abstractmethod
def can_abort_transport() -> bool:
"""
Whether the backend can abort the transport.
If this returns False, then Ray will kill involved actors upon system errors to avoid hanging.
Returns:
bool: True if the backend can abort the transport.
"""
[docs]
@abstractmethod
def actor_has_tensor_transport(self, actor: "ray.actor.ActorHandle") -> bool:
"""Whether the actor has the tensor transport available.
Args:
actor: The actor to check.
Returns:
bool: True if the actor has the tensor transport available, False otherwise.
"""
[docs]
@abstractmethod
def recv_multiple_tensors(
self,
obj_id: str,
tensor_transport_metadata: TensorTransportMetadata,
communicator_metadata: CommunicatorMetadata,
) -> List["torch.Tensor"]:
"""
Receive multiple tensors from the source actor. This is called on the destination actor.
Args:
obj_id: The object ID for related GPU object.
tensor_transport_metadata: The tensor transport metadata for the GPU object.
communicator_metadata: The communicator metadata for the send/recv operation.
Returns:
List[torch.Tensor]: The received tensors.
"""
[docs]
@abstractmethod
def send_multiple_tensors(
self,
tensors: List["torch.Tensor"],
tensor_transport_metadata: TensorTransportMetadata,
communicator_metadata: CommunicatorMetadata,
):
"""
Send multiple tensors to the destination actor. This is called on the source actor.
Args:
tensors: The tensors to send.
tensor_transport_metadata: The tensor transport metadata for the RDT object.
communicator_metadata: The communicator metadata for the send/recv operation.
"""
[docs]
@abstractmethod
def garbage_collect(
self, obj_id: str, tensor_transport_meta: TensorTransportMetadata
):
"""
Garbage collect for the tensor transport after the GPU object is freed. This is only
called on the source actor after Ray's distributed reference counting decides the object
is out of scope.
Args:
obj_id: The ID of the GPU object to garbage collect.
tensor_transport_meta: The tensor transport metadata.
"""
[docs]
@abstractmethod
def abort_transport(
self,
obj_id: str,
communicator_metadata: CommunicatorMetadata,
):
"""
Abort the transport. This is called on both the source and destination actors.
Args:
obj_id: The object ID for related GPU object.
communicator_metadata: The communicator metadata for the send/recv operation.
"""