ray.data.from_tf#
- ray.data.from_tf(dataset: tf.data.Dataset) MaterializedDataset [source]#
Create a
Dataset
from a TensorFlow Dataset.This function is inefficient. Use it to read small datasets or prototype.
Warning
If your dataset is large, this function may execute slowly or raise an out-of-memory error. To avoid issues, read the underyling data with a function like
read_images()
.Note
This function isn’t parallelized. It loads the entire dataset into the local node’s memory before moving the data to the distributed object store.
Examples
>>> import ray >>> import tensorflow_datasets as tfds >>> dataset, _ = tfds.load('cifar10', split=["train", "test"]) >>> ds = ray.data.from_tf(dataset) >>> ds MaterializedDataset( num_blocks=..., num_rows=50000, schema={ id: binary, image: numpy.ndarray(shape=(32, 32, 3), dtype=uint8), label: int64 } ) >>> ds.take(1) [{'id': b'train_16399', 'image': array([[[143, 96, 70], [141, 96, 72], [135, 93, 72], ..., [ 96, 37, 19], [105, 42, 18], [104, 38, 20]], ..., [[195, 161, 126], [187, 153, 123], [186, 151, 128], ..., [212, 177, 147], [219, 185, 155], [221, 187, 157]]], dtype=uint8), 'label': 7}]
- Parameters:
dataset – A TensorFlow Dataset.
- Returns:
A
MaterializedDataset
that contains the samples stored in the TensorFlow Dataset.