Source code for ray.tune.logger.json

import json
import logging
from pathlib import Path
from typing import TYPE_CHECKING, Dict, TextIO

import numpy as np

import ray.cloudpickle as cloudpickle
from ray.air.constants import EXPR_PARAM_FILE, EXPR_PARAM_PICKLE_FILE, EXPR_RESULT_FILE
from ray.tune.logger.logger import _LOGGER_DEPRECATION_WARNING, Logger, LoggerCallback
from ray.tune.utils.util import SafeFallbackEncoder
from ray.util.annotations import Deprecated, PublicAPI

if TYPE_CHECKING:
    from ray.tune.experiment.trial import Trial  # noqa: F401

logger = logging.getLogger(__name__)

tf = None
VALID_SUMMARY_TYPES = [int, float, np.float32, np.float64, np.int32, np.int64]


@Deprecated(
    message=_LOGGER_DEPRECATION_WARNING.format(
        old="JsonLogger", new="ray.tune.json.JsonLoggerCallback"
    ),
    warning=True,
)
@PublicAPI
class JsonLogger(Logger):
    """Logs trial results in json format.

    Also writes to a results file and param.json file when results or
    configurations are updated. Experiments must be executed with the
    JsonLogger to be compatible with the ExperimentAnalysis tool.
    """

    def _init(self):
        self.update_config(self.config)
        local_file = Path(self.logdir, EXPR_RESULT_FILE)
        self.local_out = local_file.open("a")

    def on_result(self, result: Dict):
        json.dump(result, self, cls=SafeFallbackEncoder)
        self.write("\n")
        self.local_out.flush()

    def write(self, b):
        self.local_out.write(b)

    def flush(self):
        if not self.local_out.closed:
            self.local_out.flush()

    def close(self):
        self.local_out.close()

    def update_config(self, config: Dict):
        self.config = config
        config_out = Path(self.logdir, EXPR_PARAM_FILE)
        with open(config_out, "w") as f:
            json.dump(self.config, f, indent=2, sort_keys=True, cls=SafeFallbackEncoder)
        config_pkl = Path(self.logdir, EXPR_PARAM_PICKLE_FILE)
        with config_pkl.open("wb") as f:
            cloudpickle.dump(self.config, f)


[docs] @PublicAPI class JsonLoggerCallback(LoggerCallback): """Logs trial results in json format. Also writes to a results file and param.json file when results or configurations are updated. Experiments must be executed with the JsonLoggerCallback to be compatible with the ExperimentAnalysis tool. """ _SAVED_FILE_TEMPLATES = [EXPR_RESULT_FILE, EXPR_PARAM_FILE, EXPR_PARAM_PICKLE_FILE] def __init__(self): self._trial_configs: Dict["Trial", Dict] = {} self._trial_files: Dict["Trial", TextIO] = {} def log_trial_start(self, trial: "Trial"): if trial in self._trial_files: self._trial_files[trial].close() # Update config self.update_config(trial, trial.config) # Make sure logdir exists trial.init_local_path() local_file = Path(trial.local_path, EXPR_RESULT_FILE) # Resume the file from remote storage. self._restore_from_remote(EXPR_RESULT_FILE, trial) self._trial_files[trial] = local_file.open("at") def log_trial_result(self, iteration: int, trial: "Trial", result: Dict): if trial not in self._trial_files: self.log_trial_start(trial) json.dump(result, self._trial_files[trial], cls=SafeFallbackEncoder) self._trial_files[trial].write("\n") self._trial_files[trial].flush() def log_trial_end(self, trial: "Trial", failed: bool = False): if trial not in self._trial_files: return self._trial_files[trial].close() del self._trial_files[trial] def update_config(self, trial: "Trial", config: Dict): self._trial_configs[trial] = config config_out = Path(trial.local_path, EXPR_PARAM_FILE) with config_out.open("w") as f: json.dump( self._trial_configs[trial], f, indent=2, sort_keys=True, cls=SafeFallbackEncoder, ) config_pkl = Path(trial.local_path, EXPR_PARAM_PICKLE_FILE) with config_pkl.open("wb") as f: cloudpickle.dump(self._trial_configs[trial], f)