import json
import logging
from pathlib import Path
from typing import TYPE_CHECKING, Dict, TextIO
import numpy as np
import ray.cloudpickle as cloudpickle
from ray.air.constants import EXPR_PARAM_FILE, EXPR_PARAM_PICKLE_FILE, EXPR_RESULT_FILE
from ray.tune.logger.logger import _LOGGER_DEPRECATION_WARNING, Logger, LoggerCallback
from ray.tune.utils.util import SafeFallbackEncoder
from ray.util.annotations import Deprecated, PublicAPI
if TYPE_CHECKING:
from ray.tune.experiment.trial import Trial # noqa: F401
logger = logging.getLogger(__name__)
tf = None
VALID_SUMMARY_TYPES = [int, float, np.float32, np.float64, np.int32, np.int64]
@Deprecated(
message=_LOGGER_DEPRECATION_WARNING.format(
old="JsonLogger", new="ray.tune.json.JsonLoggerCallback"
),
warning=True,
)
@PublicAPI
class JsonLogger(Logger):
"""Logs trial results in json format.
Also writes to a results file and param.json file when results or
configurations are updated. Experiments must be executed with the
JsonLogger to be compatible with the ExperimentAnalysis tool.
"""
def _init(self):
self.update_config(self.config)
local_file = Path(self.logdir, EXPR_RESULT_FILE)
self.local_out = local_file.open("a")
def on_result(self, result: Dict):
json.dump(result, self, cls=SafeFallbackEncoder)
self.write("\n")
self.local_out.flush()
def write(self, b):
self.local_out.write(b)
def flush(self):
if not self.local_out.closed:
self.local_out.flush()
def close(self):
self.local_out.close()
def update_config(self, config: Dict):
self.config = config
config_out = Path(self.logdir, EXPR_PARAM_FILE)
with open(config_out, "w") as f:
json.dump(self.config, f, indent=2, sort_keys=True, cls=SafeFallbackEncoder)
config_pkl = Path(self.logdir, EXPR_PARAM_PICKLE_FILE)
with config_pkl.open("wb") as f:
cloudpickle.dump(self.config, f)
[docs]
@PublicAPI
class JsonLoggerCallback(LoggerCallback):
"""Logs trial results in json format.
Also writes to a results file and param.json file when results or
configurations are updated. Experiments must be executed with the
JsonLoggerCallback to be compatible with the ExperimentAnalysis tool.
"""
_SAVED_FILE_TEMPLATES = [EXPR_RESULT_FILE, EXPR_PARAM_FILE, EXPR_PARAM_PICKLE_FILE]
def __init__(self):
self._trial_configs: Dict["Trial", Dict] = {}
self._trial_files: Dict["Trial", TextIO] = {}
def log_trial_start(self, trial: "Trial"):
if trial in self._trial_files:
self._trial_files[trial].close()
# Update config
self.update_config(trial, trial.config)
# Make sure logdir exists
trial.init_local_path()
local_file = Path(trial.local_path, EXPR_RESULT_FILE)
# Resume the file from remote storage.
self._restore_from_remote(EXPR_RESULT_FILE, trial)
self._trial_files[trial] = local_file.open("at")
def log_trial_result(self, iteration: int, trial: "Trial", result: Dict):
if trial not in self._trial_files:
self.log_trial_start(trial)
json.dump(result, self._trial_files[trial], cls=SafeFallbackEncoder)
self._trial_files[trial].write("\n")
self._trial_files[trial].flush()
def log_trial_end(self, trial: "Trial", failed: bool = False):
if trial not in self._trial_files:
return
self._trial_files[trial].close()
del self._trial_files[trial]
def update_config(self, trial: "Trial", config: Dict):
self._trial_configs[trial] = config
config_out = Path(trial.local_path, EXPR_PARAM_FILE)
with config_out.open("w") as f:
json.dump(
self._trial_configs[trial],
f,
indent=2,
sort_keys=True,
cls=SafeFallbackEncoder,
)
config_pkl = Path(trial.local_path, EXPR_PARAM_PICKLE_FILE)
with config_pkl.open("wb") as f:
cloudpickle.dump(self._trial_configs[trial], f)