Source code for ray.util.metrics

import logging

from typing import Dict, Any, List, Optional, Tuple

from ray._raylet import (
    Count as CythonCount,
    Histogram as CythonHistogram,
    Gauge as CythonGauge,
)  # noqa: E402

logger = logging.getLogger(__name__)


[docs]class Metric: """The parent class of custom metrics. Ray's custom metrics APIs are rooted from this class and share the same public methods. """ def __init__(self, name: str, description: str = "", tag_keys: Optional[Tuple[str]] = None): if len(name) == 0: raise ValueError("Empty name is not allowed. " "Please provide a metric name.") self._name = name self._description = description # We don't specify unit because it won't be # exported to Prometheus anyway. self._unit = "" # The default tags key-value pair. self._default_tags = {} # Keys of tags. self._tag_keys = tag_keys or tuple() # The Cython metric class. This should be set in the child class. self._metric = None if not isinstance(self._tag_keys, tuple): raise ValueError("tag_keys should be a tuple type, got: " f"{type(self._tag_keys)}")
[docs] def set_default_tags(self, default_tags: Dict[str, str]): """Set default tags of metrics. Example: >>> # Note that set_default_tags returns the instance itself. >>> counter = Counter("name") >>> counter2 = counter.set_default_tags({"a": "b"}) >>> assert counter is counter2 >>> # this means you can instantiate it in this way. >>> counter = Counter("name").set_default_tags({"a": "b"}) Args: default_tags(dict): Default tags that are used for every record method. Returns: Metric: it returns the instance itself. """ self._default_tags = default_tags return self
[docs] def record(self, value: float, tags: dict = None) -> None: """Record the metric point of the metric. Args: value(float): The value to be recorded as a metric point. """ assert self._metric is not None default_tag_copy = self._default_tags.copy() default_tag_copy.update(tags or {}) self._metric.record(value, tags=default_tag_copy)
@property def info(self) -> Dict[str, Any]: """Return the information of this metric. Example: >>> counter = Counter("name", description="desc") print(counter.info) \""" { "name": "name", "description": "desc" "tag_keys": ("ray.key") "default_tags": {"ray.key": "abc"} } \""" """ return { "name": self._name, "description": self._description, "tag_keys": self._tag_keys, "default_tags": self._default_tags }
[docs]class Count(Metric): """The count of the number of metric points. This is corresponding to Prometheus' Count metric. Args: name(str): Name of the metric. description(str): Description of the metric. tag_keys(tuple): Tag keys of the metric. """ def __init__(self, name: str, description: str = "", tag_keys: Optional[Tuple[str]] = None): super().__init__(name, description, tag_keys) self._metric = CythonCount(self._name, self._description, self._unit, self._tag_keys)
[docs]class Histogram(Metric): """Histogram distribution of metric points. This is corresponding to Prometheus' Histogram metric. Recording metrics with histogram will enable you to import min, mean, max, 25, 50, 95, 99 percentile latency. Args: name(str): Name of the metric. description(str): Description of the metric. boundaries(list): Boundaries of histogram buckets. tag_keys(tuple): Tag keys of the metric. """ def __init__(self, name: str, description: str = "", boundaries: List[float] = None, tag_keys: Optional[Tuple[str]] = None): super().__init__(name, description, tag_keys) if boundaries is None or len(boundaries) == 0: raise ValueError( "boundaries argument should be provided when using the " "Histogram class. EX) Histgoram(boundaries=[1.0, 2.0])") self.boundaries = boundaries self._metric = CythonHistogram(self._name, self._description, self._unit, self.boundaries, self._tag_keys) @property def info(self): """Return information about histogram metric.""" info = super().info info.update({"boundaries": self.boundaries}) return info
[docs]class Gauge(Metric): """Gauge Keeps the last recorded value, drops everything before. This is corresponding to Prometheus' Gauge metric. Args: name(str): Name of the metric. description(str): Description of the metric. tag_keys(tuple): Tag keys of the metric. """ def __init__(self, name: str, description: str = "", tag_keys: Optional[Tuple[str]] = None): super().__init__(name, description, tag_keys) self._metric = CythonGauge(self._name, self._description, self._unit, self._tag_keys)
__all__ = [ "Count", "Histogram", "Gauge", ]