Source code for ray.tune.integration.xgboost

from typing import Callable, Dict, List, Union, Optional
from collections import OrderedDict
from ray import tune

import os

from ray.tune.utils import flatten_dict
from xgboost.core import Booster

try:
    from xgboost.callback import TrainingCallback
except ImportError:

    class TrainingCallback:
        pass


class TuneCallback(TrainingCallback):
    """Base class for Tune's XGBoost callbacks."""

    def __call__(self, env):
        """Compatibility with xgboost<1.3"""
        return self.after_iteration(
            env.model, env.iteration, env.evaluation_result_list
        )

    def after_iteration(self, model: Booster, epoch: int, evals_log: Dict):
        raise NotImplementedError


[docs]class TuneReportCallback(TuneCallback): """XGBoost to Ray Tune reporting callback Reports metrics to Ray Tune. Args: metrics: Metrics to report to Tune. If this is a list, each item describes the metric key reported to XGBoost, and it will reported under the same name to Tune. If this is a dict, each key will be the name reported to Tune and the respective value will be the metric key reported to XGBoost. If this is None, all metrics will be reported to Tune under their default names as obtained from XGBoost. results_postprocessing_fn: An optional Callable that takes in the dict that will be reported to Tune (after it has been flattened) and returns a modified dict that will be reported instead. Can be used to eg. average results across CV fold when using ``xgboost.cv``. Example: .. code-block:: python import xgboost from ray.tune.integration.xgboost import TuneReportCallback config = { # ... "eval_metric": ["auc", "logloss"] } # Report only log loss to Tune after each validation epoch: bst = xgb.train( config, train_set, evals=[(test_set, "eval")], verbose_eval=False, callbacks=[TuneReportCallback({"loss": "eval-logloss"})]) """ def __init__( self, metrics: Optional[Union[str, List[str], Dict[str, str]]] = None, results_postprocessing_fn: Optional[ Callable[[Dict[str, Union[float, List[float]]]], Dict[str, float]] ] = None, ): if isinstance(metrics, str): metrics = [metrics] self._metrics = metrics self._results_postprocessing_fn = results_postprocessing_fn def _get_report_dict(self, evals_log): if isinstance(evals_log, OrderedDict): # xgboost>=1.3 result_dict = flatten_dict(evals_log, delimiter="-") for k in list(result_dict): result_dict[k] = result_dict[k][-1] else: # xgboost<1.3 result_dict = dict(evals_log) if not self._metrics: report_dict = result_dict else: report_dict = {} for key in self._metrics: if isinstance(self._metrics, dict): metric = self._metrics[key] else: metric = key report_dict[key] = result_dict[metric] if self._results_postprocessing_fn: report_dict = self._results_postprocessing_fn(report_dict) return report_dict def after_iteration(self, model: Booster, epoch: int, evals_log: Dict): report_dict = self._get_report_dict(evals_log) tune.report(**report_dict)
class _TuneCheckpointCallback(TuneCallback): """XGBoost checkpoint callback Saves checkpoints after each validation step. Checkpoint are currently not registered if no ``tune.report()`` call is made afterwards. Consider using ``TuneReportCheckpointCallback`` instead. Args: filename: Filename of the checkpoint within the checkpoint directory. Defaults to "checkpoint". frequency: How often to save checkpoints. Per default, a checkpoint is saved every five iterations. """ def __init__(self, filename: str = "checkpoint", frequency: int = 5): self._filename = filename self._frequency = frequency @staticmethod def _create_checkpoint(model: Booster, epoch: int, filename: str, frequency: int): if epoch % frequency > 0 or (not epoch and frequency > 1): # Skip 0th checkpoint if frequency > 1 return with tune.checkpoint_dir(step=epoch) as checkpoint_dir: model.save_model(os.path.join(checkpoint_dir, filename)) def after_iteration(self, model: Booster, epoch: int, evals_log: Dict): self._create_checkpoint(model, epoch, self._filename, self._frequency)
[docs]class TuneReportCheckpointCallback(TuneCallback): """XGBoost report and checkpoint callback Saves checkpoints after each validation step. Also reports metrics to Tune, which is needed for checkpoint registration. Args: metrics: Metrics to report to Tune. If this is a list, each item describes the metric key reported to XGBoost, and it will reported under the same name to Tune. If this is a dict, each key will be the name reported to Tune and the respective value will be the metric key reported to XGBoost. filename: Filename of the checkpoint within the checkpoint directory. Defaults to "checkpoint". If this is None, all metrics will be reported to Tune under their default names as obtained from XGBoost. frequency: How often to save checkpoints. Per default, a checkpoint is saved every five iterations. results_postprocessing_fn: An optional Callable that takes in the dict that will be reported to Tune (after it has been flattened) and returns a modified dict that will be reported instead. Can be used to eg. average results across CV fold when using ``xgboost.cv``. Example: .. code-block:: python import xgboost from ray.tune.integration.xgboost import TuneReportCheckpointCallback config = { # ... "eval_metric": ["auc", "logloss"] } # Report only log loss to Tune after each validation epoch. # Save model as `xgboost.mdl`. bst = xgb.train( config, train_set, evals=[(test_set, "eval")], verbose_eval=False, callbacks=[TuneReportCheckpointCallback( {"loss": "eval-logloss"}, "xgboost.mdl)]) """ _checkpoint_callback_cls = _TuneCheckpointCallback _report_callbacks_cls = TuneReportCallback def __init__( self, metrics: Optional[Union[str, List[str], Dict[str, str]]] = None, filename: str = "checkpoint", frequency: int = 5, results_postprocessing_fn: Optional[ Callable[[Dict[str, Union[float, List[float]]]], float] ] = None, ): self._checkpoint = self._checkpoint_callback_cls(filename, frequency) self._report = self._report_callbacks_cls(metrics, results_postprocessing_fn) def after_iteration(self, model: Booster, epoch: int, evals_log: Dict): self._checkpoint.after_iteration(model, epoch, evals_log) self._report.after_iteration(model, epoch, evals_log)