Source code for ray.rllib.algorithms.marwil.marwil

from typing import Callable, Optional, Type, Union

from ray.rllib.algorithms.algorithm import Algorithm
from ray.rllib.algorithms.algorithm_config import AlgorithmConfig, NotProvided
from ray.rllib.connectors.learner import (
    AddObservationsFromEpisodesToBatch,
    AddOneTsToEpisodesAndTruncate,
    AddNextObservationsFromEpisodesToTrainBatch,
    GeneralAdvantageEstimation,
)
from ray.rllib.core.learner.learner import Learner
from ray.rllib.core.rl_module.rl_module import RLModuleSpec
from ray.rllib.execution.rollout_ops import (
    synchronous_parallel_sample,
)
from ray.rllib.execution.train_ops import (
    multi_gpu_train_one_step,
    train_one_step,
)
from ray.rllib.policy.policy import Policy
from ray.rllib.utils.annotations import OldAPIStack, override
from ray.rllib.utils.deprecation import deprecation_warning
from ray.rllib.utils.metrics import (
    ALL_MODULES,
    LEARNER_RESULTS,
    LEARNER_UPDATE_TIMER,
    NUM_AGENT_STEPS_SAMPLED,
    NUM_ENV_STEPS_SAMPLED,
    OFFLINE_SAMPLING_TIMER,
    SAMPLE_TIMER,
    SYNCH_WORKER_WEIGHTS_TIMER,
    TIMERS,
)
from ray.rllib.utils.typing import (
    EnvType,
    ResultDict,
    RLModuleSpecType,
)
from ray.tune.logger import Logger


[docs] class MARWILConfig(AlgorithmConfig): """Defines a configuration class from which a MARWIL Algorithm can be built. .. testcode:: import gymnasium as gym import numpy as np from pathlib import Path from ray.rllib.algorithms.marwil import MARWILConfig # Get the base path (to ray/rllib) base_path = Path(__file__).parents[2] # Get the path to the data in rllib folder. data_path = base_path / "tests/data/cartpole/cartpole-v1_large" config = MARWILConfig() # Enable the new API stack. config.api_stack( enable_rl_module_and_learner=True, enable_env_runner_and_connector_v2=True, ) # Define the environment for which to learn a policy # from offline data. config.environment( observation_space=gym.spaces.Box( np.array([-4.8, -np.inf, -0.41887903, -np.inf]), np.array([4.8, np.inf, 0.41887903, np.inf]), shape=(4,), dtype=np.float32, ), action_space=gym.spaces.Discrete(2), ) # Set the training parameters. config.training( beta=1.0, lr=1e-5, gamma=0.99, # We must define a train batch size for each # learner (here 1 local learner). train_batch_size_per_learner=2000, ) # Define the data source for offline data. config.offline_data( input_=[data_path.as_posix()], # Run exactly one update per training iteration. dataset_num_iters_per_learner=1, ) # Build an `Algorithm` object from the config and run 1 training # iteration. algo = config.build() algo.train() .. testcode:: import gymnasium as gym import numpy as np from pathlib import Path from ray.rllib.algorithms.marwil import MARWILConfig from ray import train, tune # Get the base path (to ray/rllib) base_path = Path(__file__).parents[2] # Get the path to the data in rllib folder. data_path = base_path / "tests/data/cartpole/cartpole-v1_large" config = MARWILConfig() # Enable the new API stack. config.api_stack( enable_rl_module_and_learner=True, enable_env_runner_and_connector_v2=True, ) # Print out some default values print(f"beta: {config.beta}") # Update the config object. config.training( lr=tune.grid_search([1e-3, 1e-4]), beta=0.75, # We must define a train batch size for each # learner (here 1 local learner). train_batch_size_per_learner=2000, ) # Set the config's data path. config.offline_data( input_=[data_path.as_posix()], # Set the number of updates to be run per learner # per training step. dataset_num_iters_per_learner=1, ) # Set the config's environment for evalaution. config.environment( observation_space=gym.spaces.Box( np.array([-4.8, -np.inf, -0.41887903, -np.inf]), np.array([4.8, np.inf, 0.41887903, np.inf]), shape=(4,), dtype=np.float32, ), action_space=gym.spaces.Discrete(2), ) # Set up a tuner to run the experiment. tuner = tune.Tuner( "MARWIL", param_space=config, run_config=train.RunConfig( stop={"training_iteration": 1}, ), ) # Run the experiment. tuner.fit() """ def __init__(self, algo_class=None): """Initializes a MARWILConfig instance.""" self.exploration_config = { # The Exploration class to use. In the simplest case, this is the name # (str) of any class present in the `rllib.utils.exploration` package. # You can also provide the python class directly or the full location # of your class (e.g. "ray.rllib.utils.exploration.epsilon_greedy. # EpsilonGreedy"). "type": "StochasticSampling", # Add constructor kwargs here (if any). } super().__init__(algo_class=algo_class or MARWIL) # fmt: off # __sphinx_doc_begin__ # MARWIL specific settings: self.beta = 1.0 self.bc_logstd_coeff = 0.0 self.moving_average_sqd_adv_norm_update_rate = 1e-8 self.moving_average_sqd_adv_norm_start = 100.0 self.vf_coeff = 1.0 self.model["vf_share_layers"] = False self.grad_clip = None # Override some of AlgorithmConfig's default values with MARWIL-specific values. # You should override input_ to point to an offline dataset # (see algorithm.py and algorithm_config.py). # The dataset may have an arbitrary number of timesteps # (and even episodes) per line. # However, each line must only contain consecutive timesteps in # order for MARWIL to be able to calculate accumulated # discounted returns. It is ok, though, to have multiple episodes in # the same line. self.input_ = "sampler" self.postprocess_inputs = True self.lr = 1e-4 self.lambda_ = 1.0 self.train_batch_size = 2000 # Materialize only the data in raw format, but not the mapped data b/c # MARWIL uses a connector to calculate values and therefore the module # needs to be updated frequently. This updating would not work if we # map the data once at the beginning. # TODO (simon, sven): The module is only updated when the OfflinePreLearner # gets reinitiated, i.e. when the iterator gets reinitiated. This happens # frequently enough with a small dataset, but with a big one this does not # update often enough. We might need to put model weigths every couple of # iterations into the object storage (maybe also connector states). self.materialize_data = True self.materialize_mapped_data = False # __sphinx_doc_end__ # fmt: on self._set_off_policy_estimation_methods = False
[docs] @override(AlgorithmConfig) def training( self, *, beta: Optional[float] = NotProvided, bc_logstd_coeff: Optional[float] = NotProvided, moving_average_sqd_adv_norm_update_rate: Optional[float] = NotProvided, moving_average_sqd_adv_norm_start: Optional[float] = NotProvided, vf_coeff: Optional[float] = NotProvided, grad_clip: Optional[float] = NotProvided, **kwargs, ) -> "MARWILConfig": """Sets the training related configuration. Args: beta: Scaling of advantages in exponential terms. When beta is 0.0, MARWIL is reduced to behavior cloning (imitation learning); see bc.py algorithm in this same directory. bc_logstd_coeff: A coefficient to encourage higher action distribution entropy for exploration. moving_average_sqd_adv_norm_update_rate: The rate for updating the squared moving average advantage norm (c^2). A higher rate leads to faster updates of this moving avergage. moving_average_sqd_adv_norm_start: Starting value for the squared moving average advantage norm (c^2). vf_coeff: Balancing value estimation loss and policy optimization loss. grad_clip: If specified, clip the global norm of gradients by this amount. Returns: This updated AlgorithmConfig object. """ # Pass kwargs onto super's `training()` method. super().training(**kwargs) if beta is not NotProvided: self.beta = beta if bc_logstd_coeff is not NotProvided: self.bc_logstd_coeff = bc_logstd_coeff if moving_average_sqd_adv_norm_update_rate is not NotProvided: self.moving_average_sqd_adv_norm_update_rate = ( moving_average_sqd_adv_norm_update_rate ) if moving_average_sqd_adv_norm_start is not NotProvided: self.moving_average_sqd_adv_norm_start = moving_average_sqd_adv_norm_start if vf_coeff is not NotProvided: self.vf_coeff = vf_coeff if grad_clip is not NotProvided: self.grad_clip = grad_clip return self
@override(AlgorithmConfig) def get_default_rl_module_spec(self) -> RLModuleSpecType: if self.framework_str == "torch": from ray.rllib.algorithms.ppo.torch.default_ppo_torch_rl_module import ( DefaultPPOTorchRLModule, ) return RLModuleSpec(module_class=DefaultPPOTorchRLModule) else: raise ValueError( f"The framework {self.framework_str} is not supported. " "Use 'torch' instead." ) @override(AlgorithmConfig) def get_default_learner_class(self) -> Union[Type["Learner"], str]: if self.framework_str == "torch": from ray.rllib.algorithms.marwil.torch.marwil_torch_learner import ( MARWILTorchLearner, ) return MARWILTorchLearner else: raise ValueError( f"The framework {self.framework_str} is not supported. " "Use 'torch' instead." ) @override(AlgorithmConfig) def evaluation( self, **kwargs, ) -> "MARWILConfig": """Sets the evaluation related configuration. Returns: This updated AlgorithmConfig object. """ # Pass kwargs onto super's `evaluation()` method. super().evaluation(**kwargs) if "off_policy_estimation_methods" in kwargs: # User specified their OPE methods. self._set_off_policy_estimation_methods = True return self @override(AlgorithmConfig) def offline_data(self, **kwargs) -> "MARWILConfig": super().offline_data(**kwargs) # Check, if the passed in class incorporates the `OfflinePreLearner` # interface. if "prelearner_class" in kwargs: from ray.rllib.offline.offline_data import OfflinePreLearner if not issubclass(kwargs.get("prelearner_class"), OfflinePreLearner): raise ValueError( f"`prelearner_class` {kwargs.get('prelearner_class')} is not a " "subclass of `OfflinePreLearner`. Any class passed to " "`prelearner_class` needs to implement the interface given by " "`OfflinePreLearner`." ) return self @override(AlgorithmConfig) def build( self, env: Optional[Union[str, EnvType]] = None, logger_creator: Optional[Callable[[], Logger]] = None, ) -> "Algorithm": if not self._set_off_policy_estimation_methods: deprecation_warning( old=r"MARWIL used to have off_policy_estimation_methods " "is and wis by default. This has" r"changed to off_policy_estimation_methods: \{\}." "If you want to use an off-policy estimator, specify it in" ".evaluation(off_policy_estimation_methods=...)", error=False, ) return super().build(env, logger_creator) @override(AlgorithmConfig) def build_learner_connector( self, input_observation_space, input_action_space, device=None, ): pipeline = super().build_learner_connector( input_observation_space=input_observation_space, input_action_space=input_action_space, device=device, ) # Before anything, add one ts to each episode (and record this in the loss # mask, so that the computations at this extra ts are not used to compute # the loss). pipeline.prepend(AddOneTsToEpisodesAndTruncate()) # Prepend the "add-NEXT_OBS-from-episodes-to-train-batch" connector piece (right # after the corresponding "add-OBS-..." default piece). pipeline.insert_after( AddObservationsFromEpisodesToBatch, AddNextObservationsFromEpisodesToTrainBatch(), ) # At the end of the pipeline (when the batch is already completed), add the # GAE connector, which performs a vf forward pass, then computes the GAE # computations, and puts the results of this (advantages, value targets) # directly back in the batch. This is then the batch used for # `forward_train` and `compute_losses`. pipeline.append( GeneralAdvantageEstimation(gamma=self.gamma, lambda_=self.lambda_) ) return pipeline @override(AlgorithmConfig) def validate(self) -> None: # Call super's validation method. super().validate() if self.beta < 0.0 or self.beta > 1.0: self._value_error("`beta` must be within 0.0 and 1.0!") if self.postprocess_inputs is False and self.beta > 0.0: self._value_error( "`postprocess_inputs` must be True for MARWIL (to " "calculate accum., discounted returns)! Try setting " "`config.offline_data(postprocess_inputs=True)`." ) # Assert that for a local learner the number of iterations is 1. Note, # this is needed because we have no iterators, but instead a single # batch returned directly from the `OfflineData.sample` method. if ( self.num_learners == 0 and not self.dataset_num_iters_per_learner and self.enable_rl_module_and_learner ): self._value_error( "When using a local Learner (`config.num_learners=0`), the number of " "iterations per learner (`dataset_num_iters_per_learner`) has to be " "defined! Set this hyperparameter through `config.offline_data(" "dataset_num_iters_per_learner=...)`." ) @property def _model_auto_keys(self): return super()._model_auto_keys | {"beta": self.beta, "vf_share_layers": False}
class MARWIL(Algorithm): @classmethod @override(Algorithm) def get_default_config(cls) -> AlgorithmConfig: return MARWILConfig() @classmethod @override(Algorithm) def get_default_policy_class( cls, config: AlgorithmConfig ) -> Optional[Type[Policy]]: if config["framework"] == "torch": from ray.rllib.algorithms.marwil.marwil_torch_policy import ( MARWILTorchPolicy, ) return MARWILTorchPolicy elif config["framework"] == "tf": from ray.rllib.algorithms.marwil.marwil_tf_policy import ( MARWILTF1Policy, ) return MARWILTF1Policy else: from ray.rllib.algorithms.marwil.marwil_tf_policy import MARWILTF2Policy return MARWILTF2Policy @override(Algorithm) def training_step(self) -> None: """Implements training logic for the new stack Note, this includes so far training with the `OfflineData` class (multi-/single-learner setup) and evaluation on `EnvRunner`s. Note further, evaluation on the dataset itself using estimators is not implemented, yet. """ # Old API stack (Policy, RolloutWorker, Connector). if not self.config.enable_env_runner_and_connector_v2: return self._training_step_old_api_stack() # TODO (simon): Take care of sampler metrics: right # now all rewards are `nan`, which possibly confuses # the user that sth. is not right, although it is as # we do not step the env. with self.metrics.log_time((TIMERS, OFFLINE_SAMPLING_TIMER)): # Sampling from offline data. batch_or_iterator = self.offline_data.sample( num_samples=self.config.train_batch_size_per_learner, num_shards=self.config.num_learners, return_iterator=self.config.num_learners > 1, ) with self.metrics.log_time((TIMERS, LEARNER_UPDATE_TIMER)): # Updating the policy. # TODO (simon, sven): Check, if we should execute directly s.th. like # `LearnerGroup.update_from_iterator()`. learner_results = self.learner_group._update( batch=batch_or_iterator, minibatch_size=self.config.train_batch_size_per_learner, num_iters=self.config.dataset_num_iters_per_learner, **self.offline_data.iter_batches_kwargs, ) # Log training results. self.metrics.merge_and_log_n_dicts(learner_results, key=LEARNER_RESULTS) # Synchronize weights. # As the results contain for each policy the loss and in addition the # total loss over all policies is returned, this total loss has to be # removed. modules_to_update = set(learner_results[0].keys()) - {ALL_MODULES} if self.eval_env_runner_group: # Update weights - after learning on the local worker - # on all remote workers. with self.metrics.log_time((TIMERS, SYNCH_WORKER_WEIGHTS_TIMER)): self.eval_env_runner_group.sync_weights( # Sync weights from learner_group to all EnvRunners. from_worker_or_learner_group=self.learner_group, policies=list(modules_to_update), inference_only=True, ) @OldAPIStack def _training_step_old_api_stack(self) -> ResultDict: """Implements training step for the old stack. Note, there is no hybrid stack anymore. If you need to use `RLModule`s, use the new api stack. """ # Collect SampleBatches from sample workers. with self._timers[SAMPLE_TIMER]: train_batch = synchronous_parallel_sample(worker_set=self.env_runner_group) train_batch = train_batch.as_multi_agent( module_id=list(self.config.policies)[0] ) self._counters[NUM_AGENT_STEPS_SAMPLED] += train_batch.agent_steps() self._counters[NUM_ENV_STEPS_SAMPLED] += train_batch.env_steps() # Train. if self.config.simple_optimizer: train_results = train_one_step(self, train_batch) else: train_results = multi_gpu_train_one_step(self, train_batch) # TODO: Move training steps counter update outside of `train_one_step()` method. # # Update train step counters. # self._counters[NUM_ENV_STEPS_TRAINED] += train_batch.env_steps() # self._counters[NUM_AGENT_STEPS_TRAINED] += train_batch.agent_steps() global_vars = { "timestep": self._counters[NUM_AGENT_STEPS_SAMPLED], } # Update weights - after learning on the local worker - on all remote # workers (only those policies that were actually trained). if self.env_runner_group.num_remote_env_runners() > 0: with self._timers[SYNCH_WORKER_WEIGHTS_TIMER]: self.env_runner_group.sync_weights( policies=list(train_results.keys()), global_vars=global_vars ) # Update global vars on local worker as well. self.env_runner.set_global_vars(global_vars) return train_results