ray.tune.Experiment#
- class ray.tune.Experiment(name: str, run: str | Callable | Type, *, stop: Mapping | Stopper | Callable[[str, Mapping], bool] | None = None, time_budget_s: int | float | timedelta | None = None, config: Dict[str, Any] | None = None, resources_per_trial: None | Mapping[str, float | int | Mapping] | PlacementGroupFactory = None, num_samples: int = 1, storage_path: str | None = None, storage_filesystem: pyarrow.fs.FileSystem | None = None, sync_config: SyncConfig | dict | None = None, checkpoint_config: CheckpointConfig | dict | None = None, trial_name_creator: Callable[[Trial], str] | None = None, trial_dirname_creator: Callable[[Trial], str] | None = None, log_to_file: bool = False, export_formats: Sequence | None = None, max_failures: int = 0, restore: str | None = None, local_dir: str | None = None)[source]#
Tracks experiment specifications.
Implicitly registers the Trainable if needed. The args here take the same meaning as the arguments defined
tune.py:run
.experiment_spec = Experiment( "my_experiment_name", my_func, stop={"mean_accuracy": 100}, config={ "alpha": tune.grid_search([0.2, 0.4, 0.6]), "beta": tune.grid_search([1, 2]), }, resources_per_trial={ "cpu": 1, "gpu": 0 }, num_samples=10, local_dir="~/ray_results", checkpoint_freq=10, max_failures=2)
DeveloperAPI: This API may change across minor Ray releases.
Methods
Generates an Experiment object from JSON.
Get Trainable name.
Registers Trainable or Function at runtime.
Attributes
Returns the spec dict with only the public-facing keys.
Returns a string representing the trainable identifier.