Source code for ray.tune.experiment.experiment

import copy
import datetime
import logging
import pprint as pp
import traceback
from functools import partial
from pathlib import Path
from pickle import PicklingError
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    List,
    Mapping,
    Optional,
    Sequence,
    Type,
    Union,
)

import ray
from ray.exceptions import RpcError
from ray.train import CheckpointConfig, SyncConfig
from ray.train._internal.storage import StorageContext
from ray.train.constants import DEFAULT_STORAGE_PATH
from ray.tune.error import TuneError
from ray.tune.registry import is_function_trainable, register_trainable
from ray.tune.stopper import CombinedStopper, FunctionStopper, Stopper, TimeoutStopper
from ray.util.annotations import Deprecated, DeveloperAPI

if TYPE_CHECKING:
    import pyarrow.fs

    from ray.tune import PlacementGroupFactory
    from ray.tune.experiment import Trial


logger = logging.getLogger(__name__)


def _validate_log_to_file(log_to_file):
    """Validate ``train.RunConfig``'s ``log_to_file`` parameter. Return
    validated relative stdout and stderr filenames."""
    if not log_to_file:
        stdout_file = stderr_file = None
    elif isinstance(log_to_file, bool) and log_to_file:
        stdout_file = "stdout"
        stderr_file = "stderr"
    elif isinstance(log_to_file, str):
        stdout_file = stderr_file = log_to_file
    elif isinstance(log_to_file, Sequence):
        if len(log_to_file) != 2:
            raise ValueError(
                "If you pass a Sequence to `log_to_file` it has to have "
                "a length of 2 (for stdout and stderr, respectively). The "
                "Sequence you passed has length {}.".format(len(log_to_file))
            )
        stdout_file, stderr_file = log_to_file
    else:
        raise ValueError(
            "You can pass a boolean, a string, or a Sequence of length 2 to "
            "`log_to_file`, but you passed something else ({}).".format(
                type(log_to_file)
            )
        )
    return stdout_file, stderr_file


[docs] @DeveloperAPI class Experiment: """Tracks experiment specifications. Implicitly registers the Trainable if needed. The args here take the same meaning as the arguments defined `tune.py:run`. .. code-block:: python experiment_spec = Experiment( "my_experiment_name", my_func, stop={"mean_accuracy": 100}, config={ "alpha": tune.grid_search([0.2, 0.4, 0.6]), "beta": tune.grid_search([1, 2]), }, resources_per_trial={ "cpu": 1, "gpu": 0 }, num_samples=10, local_dir="~/ray_results", checkpoint_freq=10, max_failures=2) """ # Keys that will be present in `public_spec` dict. PUBLIC_KEYS = {"stop", "num_samples", "time_budget_s"} _storage_context_cls = StorageContext def __init__( self, name: str, run: Union[str, Callable, Type], *, stop: Optional[Union[Mapping, Stopper, Callable[[str, Mapping], bool]]] = None, time_budget_s: Optional[Union[int, float, datetime.timedelta]] = None, config: Optional[Dict[str, Any]] = None, resources_per_trial: Union[ None, Mapping[str, Union[float, int, Mapping]], "PlacementGroupFactory" ] = None, num_samples: int = 1, storage_path: Optional[str] = None, storage_filesystem: Optional["pyarrow.fs.FileSystem"] = None, sync_config: Optional[Union[SyncConfig, dict]] = None, checkpoint_config: Optional[Union[CheckpointConfig, dict]] = None, trial_name_creator: Optional[Callable[["Trial"], str]] = None, trial_dirname_creator: Optional[Callable[["Trial"], str]] = None, log_to_file: bool = False, export_formats: Optional[Sequence] = None, max_failures: int = 0, restore: Optional[str] = None, # Deprecated local_dir: Optional[str] = None, ): if isinstance(checkpoint_config, dict): checkpoint_config = CheckpointConfig(**checkpoint_config) else: checkpoint_config = checkpoint_config or CheckpointConfig() if is_function_trainable(run): if checkpoint_config.checkpoint_at_end: raise ValueError( "'checkpoint_at_end' cannot be used with a function trainable. " "You should include one last call to " "`ray.train.report(metrics=..., checkpoint=...)` " "at the end of your training loop to get this behavior." ) if checkpoint_config.checkpoint_frequency: raise ValueError( "'checkpoint_frequency' cannot be set for a function trainable. " "You will need to report a checkpoint every " "`checkpoint_frequency` iterations within your training loop using " "`ray.train.report(metrics=..., checkpoint=...)` " "to get this behavior." ) try: self._run_identifier = Experiment.register_if_needed(run) except RpcError as e: if e.rpc_code == ray._raylet.GRPC_STATUS_CODE_RESOURCE_EXHAUSTED: raise TuneError( f"The Trainable/training function is too large for grpc resource " f"limit. Check that its definition is not implicitly capturing a " f"large array or other object in scope. " f"Tip: use tune.with_parameters() to put large objects " f"in the Ray object store. \n" f"Original exception: {traceback.format_exc()}" ) else: raise e if not name: name = StorageContext.get_experiment_dir_name(run) storage_path = storage_path or DEFAULT_STORAGE_PATH self.storage = self._storage_context_cls( storage_path=storage_path, storage_filesystem=storage_filesystem, sync_config=sync_config, experiment_dir_name=name, ) logger.debug(f"StorageContext on the DRIVER:\n{self.storage}") config = config or {} if not isinstance(config, dict): raise ValueError( f"`Experiment(config)` must be a dict, got: {type(config)}. " "Please convert your search space to a dict before passing it in." ) self._stopper = None stopping_criteria = {} if not stop: pass elif isinstance(stop, list): bad_stoppers = [s for s in stop if not isinstance(s, Stopper)] if bad_stoppers: stopper_types = [type(s) for s in stop] raise ValueError( "If you pass a list as the `stop` argument to " "`train.RunConfig()`, each element must be an instance of " f"`tune.stopper.Stopper`. Got {stopper_types}." ) self._stopper = CombinedStopper(*stop) elif isinstance(stop, dict): stopping_criteria = stop elif callable(stop): if FunctionStopper.is_valid_function(stop): self._stopper = FunctionStopper(stop) elif isinstance(stop, Stopper): self._stopper = stop else: raise ValueError( "Provided stop object must be either a dict, " "a function, or a subclass of " f"`ray.tune.Stopper`. Got {type(stop)}." ) else: raise ValueError( f"Invalid stop criteria: {stop}. Must be a " f"callable or dict. Got {type(stop)}." ) if time_budget_s: if self._stopper: self._stopper = CombinedStopper( self._stopper, TimeoutStopper(time_budget_s) ) else: self._stopper = TimeoutStopper(time_budget_s) stdout_file, stderr_file = _validate_log_to_file(log_to_file) spec = { "run": self._run_identifier, "stop": stopping_criteria, "time_budget_s": time_budget_s, "config": config, "resources_per_trial": resources_per_trial, "num_samples": num_samples, "checkpoint_config": checkpoint_config, "trial_name_creator": trial_name_creator, "trial_dirname_creator": trial_dirname_creator, "log_to_file": (stdout_file, stderr_file), "export_formats": export_formats or [], "max_failures": max_failures, "restore": ( Path(restore).expanduser().absolute().as_posix() if restore else None ), "storage": self.storage, } self.spec = spec
[docs] @classmethod def from_json(cls, name: str, spec: dict): """Generates an Experiment object from JSON. Args: name: Name of Experiment. spec: JSON configuration of experiment. """ if "run" not in spec: raise TuneError("No trainable specified!") # Special case the `env` param for RLlib by automatically # moving it into the `config` section. if "env" in spec: spec["config"] = spec.get("config", {}) spec["config"]["env"] = spec["env"] del spec["env"] if "sync_config" in spec and isinstance(spec["sync_config"], dict): spec["sync_config"] = SyncConfig(**spec["sync_config"]) if "checkpoint_config" in spec and isinstance(spec["checkpoint_config"], dict): spec["checkpoint_config"] = CheckpointConfig(**spec["checkpoint_config"]) spec = copy.deepcopy(spec) run_value = spec.pop("run") try: exp = cls(name, run_value, **spec) except TypeError as e: raise TuneError( f"Failed to load the following Tune experiment " f"specification:\n\n {pp.pformat(spec)}.\n\n" f"Please check that the arguments are valid. " f"Experiment creation failed with the following " f"error:\n {e}" ) return exp
[docs] @classmethod def get_trainable_name(cls, run_object: Union[str, Callable, Type]): """Get Trainable name. Args: run_object: Trainable to run. If string, assumes it is an ID and does not modify it. Otherwise, returns a string corresponding to the run_object name. Returns: A string representing the trainable identifier. Raises: TuneError: if ``run_object`` passed in is invalid. """ from ray.tune.search.sample import Domain if isinstance(run_object, str) or isinstance(run_object, Domain): return run_object elif isinstance(run_object, type) or callable(run_object): name = "DEFAULT" if hasattr(run_object, "_name"): name = run_object._name elif hasattr(run_object, "__name__"): fn_name = run_object.__name__ if fn_name == "<lambda>": name = "lambda" elif fn_name.startswith("<"): name = "DEFAULT" else: name = fn_name elif ( isinstance(run_object, partial) and hasattr(run_object, "func") and hasattr(run_object.func, "__name__") ): name = run_object.func.__name__ else: logger.warning("No name detected on trainable. Using {}.".format(name)) return name else: raise TuneError("Improper 'run' - not string nor trainable.")
[docs] @classmethod def register_if_needed(cls, run_object: Union[str, Callable, Type]): """Registers Trainable or Function at runtime. Assumes already registered if run_object is a string. Also, does not inspect interface of given run_object. Args: run_object: Trainable to run. If string, assumes it is an ID and does not modify it. Otherwise, returns a string corresponding to the run_object name. Returns: A string representing the trainable identifier. """ from ray.tune.search.sample import Domain if isinstance(run_object, str): return run_object elif isinstance(run_object, Domain): logger.warning("Not registering trainable. Resolving as variant.") return run_object name = cls.get_trainable_name(run_object) try: register_trainable(name, run_object) except (TypeError, PicklingError) as e: extra_msg = ( "Other options: " "\n-Try reproducing the issue by calling " "`pickle.dumps(trainable)`. " "\n-If the error is typing-related, try removing " "the type annotations and try again." ) raise type(e)(str(e) + " " + extra_msg) from None return name
@property def stopper(self): return self._stopper @property def local_path(self) -> Optional[str]: return self.storage.experiment_driver_staging_path @property @Deprecated("Replaced by `local_path`") def local_dir(self): # TODO(justinvyu): [Deprecated] Remove in 2.11. raise DeprecationWarning("Use `local_path` instead of `local_dir`.") @property def remote_path(self) -> Optional[str]: return self.storage.experiment_fs_path @property def path(self) -> Optional[str]: return self.remote_path or self.local_path @property def checkpoint_config(self): return self.spec.get("checkpoint_config") @property @Deprecated("Replaced by `local_path`") def checkpoint_dir(self): # TODO(justinvyu): [Deprecated] Remove in 2.11. raise DeprecationWarning("Use `local_path` instead of `checkpoint_dir`.") @property def run_identifier(self): """Returns a string representing the trainable identifier.""" return self._run_identifier @property def public_spec(self) -> Dict[str, Any]: """Returns the spec dict with only the public-facing keys. Intended to be used for passing information to callbacks, Searchers and Schedulers. """ return {k: v for k, v in self.spec.items() if k in self.PUBLIC_KEYS}
def _convert_to_experiment_list(experiments: Union[Experiment, List[Experiment], Dict]): """Produces a list of Experiment objects. Converts input from dict, single experiment, or list of experiments to list of experiments. If input is None, will return an empty list. Arguments: experiments: Experiments to run. Returns: List of experiments. """ exp_list = experiments # Transform list if necessary if experiments is None: exp_list = [] elif isinstance(experiments, Experiment): exp_list = [experiments] elif type(experiments) is dict: exp_list = [ Experiment.from_json(name, spec) for name, spec in experiments.items() ] # Validate exp_list if type(exp_list) is list and all(isinstance(exp, Experiment) for exp in exp_list): if len(exp_list) > 1: logger.info( "Running with multiple concurrent experiments. " "All experiments will be using the same SearchAlgorithm." ) else: raise TuneError("Invalid argument: {}".format(experiments)) return exp_list