ray.data.preprocessors.MaxAbsScaler#
- class ray.data.preprocessors.MaxAbsScaler(columns: List[str], output_columns: List[str] | None = None)[source]#
Bases:
Preprocessor
Scale each column by its absolute max value.
The general formula is given by
\[x' = \frac{x}{\max{\vert x \vert}}\]where \(x\) is the column and \(x'\) is the transformed column. If \(\max{\vert x \vert} = 0\) (i.e., the column contains all zeros), then the column is unmodified.
Tip
This is the recommended way to scale sparse data. If you data isn’t sparse, you can use
MinMaxScaler
orStandardScaler
instead.Examples
>>> import pandas as pd >>> import ray >>> from ray.data.preprocessors import MaxAbsScaler >>> >>> df = pd.DataFrame({"X1": [-6, 3], "X2": [2, -4], "X3": [0, 0]}) # noqa: E501 >>> ds = ray.data.from_pandas(df) >>> ds.to_pandas() X1 X2 X3 0 -6 2 0 1 3 -4 0
Columns are scaled separately.
>>> preprocessor = MaxAbsScaler(columns=["X1", "X2"]) >>> preprocessor.fit_transform(ds).to_pandas() X1 X2 X3 0 -1.0 0.5 0 1 0.5 -1.0 0
Zero-valued columns aren’t scaled.
>>> preprocessor = MaxAbsScaler(columns=["X3"]) >>> preprocessor.fit_transform(ds).to_pandas() X1 X2 X3 0 -6 2 0.0 1 3 -4 0.0
>>> preprocessor = MaxAbsScaler(columns=["X1", "X2"], output_columns=["X1_scaled", "X2_scaled"]) >>> preprocessor.fit_transform(ds).to_pandas() X1 X2 X3 X1_scaled X2_scaled 0 -2 -3 1 -1.0 -1.0 1 0 -3 1 0.0 -1.0 2 2 3 1 1.0 1.0
- Parameters:
columns – The columns to separately scale.
output_columns – The names of the transformed columns. If None, the transformed columns will be the same as the input columns. If not None, the length of
output_columns
must match the length ofcolumns
, othwerwise an error will be raised.
PublicAPI (alpha): This API is in alpha and may change before becoming stable.
Methods
Load the original preprocessor serialized via
self.serialize()
.Fit this Preprocessor to the Dataset.
Fit this Preprocessor to the Dataset and then transform the Dataset.
Batch format hint for upstream producers to try yielding best block format.
Return this preprocessor serialized as a string.
Transform the given dataset.
Transform a single batch of data.