Source code for ray.data.preprocessors.scaler

from typing import List, Tuple

import numpy as np
import pandas as pd

from ray.data import Dataset
from ray.data.aggregate import AbsMax, Max, Mean, Min, Std
from ray.data.preprocessor import Preprocessor
from ray.util.annotations import PublicAPI


[docs]@PublicAPI(stability="alpha") class StandardScaler(Preprocessor): r"""Translate and scale each column by its mean and standard deviation, respectively. The general formula is given by .. math:: x' = \frac{x - \bar{x}}{s} where :math:`x` is the column, :math:`x'` is the transformed column, :math:`\bar{x}` is the column average, and :math:`s` is the column's sample standard deviation. If :math:`s = 0` (i.e., the column is constant-valued), then the transformed column will contain zeros. .. warning:: :class:`StandardScaler` works best when your data is normal. If your data isn't approximately normal, then the transformed features won't be meaningful. Examples: >>> import pandas as pd >>> import ray >>> from ray.data.preprocessors import StandardScaler >>> >>> df = pd.DataFrame({"X1": [-2, 0, 2], "X2": [-3, -3, 3], "X3": [1, 1, 1]}) >>> ds = ray.data.from_pandas(df) # doctest: +SKIP >>> ds.to_pandas() # doctest: +SKIP X1 X2 X3 0 -2 -3 1 1 0 -3 1 2 2 3 1 Columns are scaled separately. >>> preprocessor = StandardScaler(columns=["X1", "X2"]) >>> preprocessor.fit_transform(ds).to_pandas() # doctest: +SKIP X1 X2 X3 0 -1.224745 -0.707107 1 1 0.000000 -0.707107 1 2 1.224745 1.414214 1 Constant-valued columns get filled with zeros. >>> preprocessor = StandardScaler(columns=["X3"]) >>> preprocessor.fit_transform(ds).to_pandas() # doctest: +SKIP X1 X2 X3 0 -2 -3 0.0 1 0 -3 0.0 2 2 3 0.0 Args: columns: The columns to separately scale. """ def __init__(self, columns: List[str]): self.columns = columns def _fit(self, dataset: Dataset) -> Preprocessor: mean_aggregates = [Mean(col) for col in self.columns] std_aggregates = [Std(col, ddof=0) for col in self.columns] self.stats_ = dataset.aggregate(*mean_aggregates, *std_aggregates) return self def _transform_pandas(self, df: pd.DataFrame): def column_standard_scaler(s: pd.Series): s_mean = self.stats_[f"mean({s.name})"] s_std = self.stats_[f"std({s.name})"] # Handle division by zero. # TODO: extend this to handle near-zero values. if s_std == 0: s_std = 1 return (s - s_mean) / s_std df.loc[:, self.columns] = df.loc[:, self.columns].transform( column_standard_scaler ) return df def __repr__(self): return f"{self.__class__.__name__}(columns={self.columns!r})"
[docs]@PublicAPI(stability="alpha") class MinMaxScaler(Preprocessor): r"""Scale each column by its range. The general formula is given by .. math:: x' = \frac{x - \min(x)}{\max{x} - \min{x}} where :math:`x` is the column and :math:`x'` is the transformed column. If :math:`\max{x} - \min{x} = 0` (i.e., the column is constant-valued), then the transformed column will get filled with zeros. Transformed values are always in the range :math:`[0, 1]`. .. tip:: This can be used as an alternative to :py:class:`StandardScaler`. Examples: >>> import pandas as pd >>> import ray >>> from ray.data.preprocessors import MinMaxScaler >>> >>> df = pd.DataFrame({"X1": [-2, 0, 2], "X2": [-3, -3, 3], "X3": [1, 1, 1]}) # noqa: E501 >>> ds = ray.data.from_pandas(df) # doctest: +SKIP >>> ds.to_pandas() # doctest: +SKIP X1 X2 X3 0 -2 -3 1 1 0 -3 1 2 2 3 1 Columns are scaled separately. >>> preprocessor = MinMaxScaler(columns=["X1", "X2"]) >>> preprocessor.fit_transform(ds).to_pandas() # doctest: +SKIP X1 X2 X3 0 0.0 0.0 1 1 0.5 0.0 1 2 1.0 1.0 1 Constant-valued columns get filled with zeros. >>> preprocessor = MinMaxScaler(columns=["X3"]) >>> preprocessor.fit_transform(ds).to_pandas() # doctest: +SKIP X1 X2 X3 0 -2 -3 0.0 1 0 -3 0.0 2 2 3 0.0 Args: columns: The columns to separately scale. """ def __init__(self, columns: List[str]): self.columns = columns def _fit(self, dataset: Dataset) -> Preprocessor: aggregates = [Agg(col) for Agg in [Min, Max] for col in self.columns] self.stats_ = dataset.aggregate(*aggregates) return self def _transform_pandas(self, df: pd.DataFrame): def column_min_max_scaler(s: pd.Series): s_min = self.stats_[f"min({s.name})"] s_max = self.stats_[f"max({s.name})"] diff = s_max - s_min # Handle division by zero. # TODO: extend this to handle near-zero values. if diff == 0: diff = 1 return (s - s_min) / diff df.loc[:, self.columns] = df.loc[:, self.columns].transform( column_min_max_scaler ) return df def __repr__(self): return f"{self.__class__.__name__}(columns={self.columns!r})"
[docs]@PublicAPI(stability="alpha") class MaxAbsScaler(Preprocessor): r"""Scale each column by its absolute max value. The general formula is given by .. math:: x' = \frac{x}{\max{\vert x \vert}} where :math:`x` is the column and :math:`x'` is the transformed column. If :math:`\max{\vert x \vert} = 0` (i.e., the column contains all zeros), then the column is unmodified. .. tip:: This is the recommended way to scale sparse data. If you data isn't sparse, you can use :class:`MinMaxScaler` or :class:`StandardScaler` instead. Examples: >>> import pandas as pd >>> import ray >>> from ray.data.preprocessors import MaxAbsScaler >>> >>> df = pd.DataFrame({"X1": [-6, 3], "X2": [2, -4], "X3": [0, 0]}) # noqa: E501 >>> ds = ray.data.from_pandas(df) # doctest: +SKIP >>> ds.to_pandas() # doctest: +SKIP X1 X2 X3 0 -6 2 0 1 3 -4 0 Columns are scaled separately. >>> preprocessor = MaxAbsScaler(columns=["X1", "X2"]) >>> preprocessor.fit_transform(ds).to_pandas() # doctest: +SKIP X1 X2 X3 0 -1.0 0.5 0 1 0.5 -1.0 0 Zero-valued columns aren't scaled. >>> preprocessor = MaxAbsScaler(columns=["X3"]) >>> preprocessor.fit_transform(ds).to_pandas() # doctest: +SKIP X1 X2 X3 0 -6 2 0.0 1 3 -4 0.0 Args: columns: The columns to separately scale. """ def __init__(self, columns: List[str]): self.columns = columns def _fit(self, dataset: Dataset) -> Preprocessor: aggregates = [AbsMax(col) for col in self.columns] self.stats_ = dataset.aggregate(*aggregates) return self def _transform_pandas(self, df: pd.DataFrame): def column_abs_max_scaler(s: pd.Series): s_abs_max = self.stats_[f"abs_max({s.name})"] # Handle division by zero. # All values are 0. if s_abs_max == 0: s_abs_max = 1 return s / s_abs_max df.loc[:, self.columns] = df.loc[:, self.columns].transform( column_abs_max_scaler ) return df def __repr__(self): return f"{self.__class__.__name__}(columns={self.columns!r})"
[docs]@PublicAPI(stability="alpha") class RobustScaler(Preprocessor): r"""Scale and translate each column using quantiles. The general formula is given by .. math:: x' = \frac{x - \mu_{1/2}}{\mu_h - \mu_l} where :math:`x` is the column, :math:`x'` is the transformed column, :math:`\mu_{1/2}` is the column median. :math:`\mu_{h}` and :math:`\mu_{l}` are the high and low quantiles, respectively. By default, :math:`\mu_{h}` is the third quartile and :math:`\mu_{l}` is the first quartile. .. tip:: This scaler works well when your data contains many outliers. Examples: >>> import pandas as pd >>> import ray >>> from ray.data.preprocessors import RobustScaler >>> >>> df = pd.DataFrame({ ... "X1": [1, 2, 3, 4, 5], ... "X2": [13, 5, 14, 2, 8], ... "X3": [1, 2, 2, 2, 3], ... }) >>> ds = ray.data.from_pandas(df) # doctest: +SKIP >>> ds.to_pandas() # doctest: +SKIP X1 X2 X3 0 1 13 1 1 2 5 2 2 3 14 2 3 4 2 2 4 5 8 3 :class:`RobustScaler` separately scales each column. >>> preprocessor = RobustScaler(columns=["X1", "X2"]) >>> preprocessor.fit_transform(ds).to_pandas() # doctest: +SKIP X1 X2 X3 0 -1.0 0.625 1 1 -0.5 -0.375 2 2 0.0 0.750 2 3 0.5 -0.750 2 4 1.0 0.000 3 Args: columns: The columns to separately scale. quantile_range: A tuple that defines the lower and upper quantiles. Values must be between 0 and 1. Defaults to the 1st and 3rd quartiles: ``(0.25, 0.75)``. """ def __init__( self, columns: List[str], quantile_range: Tuple[float, float] = (0.25, 0.75) ): self.columns = columns self.quantile_range = quantile_range def _fit(self, dataset: Dataset) -> Preprocessor: low = self.quantile_range[0] med = 0.50 high = self.quantile_range[1] num_records = dataset.count() max_index = num_records - 1 split_indices = [int(percentile * max_index) for percentile in (low, med, high)] self.stats_ = {} # TODO(matt): Handle case where quantile lands between 2 numbers. # The current implementation will simply choose the closest index. # This will affect the results of small datasets more than large datasets. for col in self.columns: filtered_dataset = dataset.map_batches( lambda df: df[[col]], batch_format="pandas" ) sorted_dataset = filtered_dataset.sort(col) _, low, med, high = sorted_dataset.split_at_indices(split_indices) def _get_first_value(ds: Dataset, c: str): return ds.take(1)[0][c] low_val = _get_first_value(low, col) med_val = _get_first_value(med, col) high_val = _get_first_value(high, col) self.stats_[f"low_quantile({col})"] = low_val self.stats_[f"median({col})"] = med_val self.stats_[f"high_quantile({col})"] = high_val return self def _transform_pandas(self, df: pd.DataFrame): def column_robust_scaler(s: pd.Series): s_low_q = self.stats_[f"low_quantile({s.name})"] s_median = self.stats_[f"median({s.name})"] s_high_q = self.stats_[f"high_quantile({s.name})"] diff = s_high_q - s_low_q # Handle division by zero. # Return all zeros. if diff == 0: return np.zeros_like(s) return (s - s_median) / diff df.loc[:, self.columns] = df.loc[:, self.columns].transform( column_robust_scaler ) return df def __repr__(self): return ( f"{self.__class__.__name__}(columns={self.columns!r}, " f"quantile_range={self.quantile_range!r})" )