PBT Visualization Helper File#
Used in Visualizing Population Based Training (PBT) Hyperparameter Optimization.
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation, PillowWriter
import numpy as np
def get_init_theta():
return np.array([0.9, 0.9])
def Q_batch(theta):
"""Returns the true function value for a batch of parameters with size (B, 2)"""
return 1.2 - (3 / 4 * theta[:, 0] ** 2 + theta[:, 1] ** 2)
def get_arrows(theta_history, perturbation_interval):
theta_history = theta_history[1:, :]
arrow_start = theta_history[
np.arange(perturbation_interval - 1, len(theta_history), perturbation_interval)
]
arrow_end = theta_history[
np.arange(perturbation_interval, len(theta_history), perturbation_interval)
]
if len(arrow_end) > len(arrow_start):
arrow_end = arrow_end[: len(arrow_start)]
else:
arrow_start = arrow_start[: len(arrow_end)]
deltas = arrow_end - arrow_start
return arrow_start, deltas
def plot_parameter_history(
results,
colors,
labels,
perturbation_interval=None,
fig=None,
ax=None,
plot_until_iter=None,
include_colorbar=True,
):
if fig is None or ax is None:
fig, ax = plt.subplots()
theta_0 = get_init_theta()
x = np.linspace(-0.2, 1.0, 50)
y = np.linspace(-0.2, 1.0, 50)
xx, yy = np.meshgrid(x, y)
xys = np.transpose(np.stack((xx, yy)).reshape(2, -1))
contour = ax.contourf(xx, yy, Q_batch(xys).reshape(xx.shape), 20)
ax.set_xlabel("theta0")
ax.set_ylabel("theta1")
ax.set_title("Q(theta)")
scatters = []
for i in range(len(results)):
df = results[i].metrics_dataframe
# Append the initial theta values to the history
theta0_history = np.concatenate([[theta_0[0]], df["theta0"].to_numpy()])
theta1_history = np.concatenate([[theta_0[1]], df["theta1"].to_numpy()])
training_iters = np.concatenate([[0], df["training_iteration"].to_numpy()])
if plot_until_iter is None:
plot_until_iter = len(training_iters)
scatter = ax.scatter(
theta0_history[:plot_until_iter],
theta1_history[:plot_until_iter],
# Size of scatter point decreases as training iteration increases
s=100 / ((training_iters[:plot_until_iter] + 1) ** 1 / 3),
alpha=0.5,
c=colors[i],
label=labels[i],
)
scatters.append(scatter)
for i, theta0, theta1 in zip(training_iters, theta0_history, theta1_history):
if i % (perturbation_interval or 1) == 0 and i < plot_until_iter:
ax.annotate(i, (theta0, theta1))
if perturbation_interval is not None:
theta_history = np.hstack(
(theta0_history.reshape(-1, 1), theta1_history.reshape(-1, 1))
)[:plot_until_iter, :]
arrow_starts, deltas = get_arrows(theta_history, perturbation_interval)
for arrow_start, delta in zip(arrow_starts, deltas):
ax.arrow(
arrow_start[0],
arrow_start[1],
delta[0],
delta[1],
head_width=0.01,
length_includes_head=True,
alpha=0.25,
)
ax.legend(loc="upper left")
if include_colorbar:
fig.colorbar(contour, ax=ax, orientation="vertical")
return scatters
def plot_Q_history(results, colors, labels, ax=None):
if ax is None:
fig, ax = plt.subplots()
ax.set_title("True function (Q) value over training iterations")
ax.set_xlabel("training_iteration")
ax.set_ylabel("Q(theta)")
for i in range(len(results)):
df = results[i].metrics_dataframe
ax.plot(df["Q"], label=labels[i], color=colors[i])
ax.legend()
def make_animation(
results, colors, labels, perturbation_interval=None, filename="pbt.gif"
):
fig, ax = plt.subplots(figsize=(8, 8))
def animate(i):
ax.clear()
return plot_parameter_history(
results,
colors,
labels,
perturbation_interval=perturbation_interval,
fig=fig,
ax=ax,
plot_until_iter=i,
include_colorbar=False,
)
ani = FuncAnimation(
fig, animate, interval=200, blit=True, repeat=True, frames=range(1, 101)
)
ani.save(filename, writer=PillowWriter())
plt.close()