#!/usr/bin/env python
import argparse
import time
from ray import train, tune
from ray.tune.logger import LoggerCallback
class TestLoggerCallback(LoggerCallback):
def on_trial_result(self, iteration, trials, trial, result, **info):
print(f"TestLogger for trial {trial}: {result}")
def trial_str_creator(trial):
return "{}_{}_123".format(trial.trainable_name, trial.trial_id)
def evaluation_fn(step, width, height):
time.sleep(0.1)
return (0.1 + width * step / 100) ** (-1) + height * 0.1
def easy_objective(config):
# Hyperparameters
width, height = config["width"], config["height"]
for step in range(config["steps"]):
# Iterative training function - can be any arbitrary training procedure
intermediate_score = evaluation_fn(step, width, height)
# Feed the score back back to Tune.
train.report({"iterations": step, "mean_loss": intermediate_score})
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--smoke-test", action="store_true", help="Finish quickly for testing"
)
args, _ = parser.parse_known_args()
tuner = tune.Tuner(
easy_objective,
run_config=train.RunConfig(
name="hyperband_test",
callbacks=[TestLoggerCallback()],
stop={"training_iteration": 1 if args.smoke_test else 100},
),
tune_config=tune.TuneConfig(
metric="mean_loss",
mode="min",
num_samples=5,
trial_name_creator=trial_str_creator,
trial_dirname_creator=trial_str_creator,
),
param_space={
"steps": 100,
"width": tune.randint(10, 100),
"height": tune.loguniform(10, 100),
},
)
results = tuner.fit()
print("Best hyperparameters: ", results.get_best_result().config)