ray.tune.TuneContext.get_node_rank#
- TuneContext.get_node_rank() int [source]#
Get the rank of this node.
Example
import ray from ray import train from ray.train import ScalingConfig from ray.train.torch import TorchTrainer def train_loop_per_worker(): print(train.get_context().get_node_rank()) train_dataset = ray.data.from_items( [{"x": x, "y": x + 1} for x in range(32)]) trainer = TorchTrainer(train_loop_per_worker, scaling_config=ScalingConfig(num_workers=1), datasets={"train": train_dataset}) trainer.fit()
PublicAPI (beta): This API is in beta and may change before becoming stable.
Warning
DEPRECATED: This API is deprecated and may be removed in future Ray releases.
get_node_rank
is deprecated for Ray Tune because there is no concept of worker ranks for Ray Tune, so these methods only make sense to use in the context of a Ray Train worker.