Training with TensorFlow and Ray Train#
This basic example runs distributed training of a TensorFlow model on MNIST with Ray Train.
Code example#
# This example showcases how to use Tensorflow with Ray Train.
# Original code:
# https://www.tensorflow.org/tutorials/distribute/multi_worker_with_keras
import argparse
import json
import os
import numpy as np
import tensorflow as tf
from filelock import FileLock
from ray.air.integrations.keras import ReportCheckpointCallback
from ray.train import Result, RunConfig, ScalingConfig
from ray.train.tensorflow import TensorflowTrainer
def mnist_dataset(batch_size: int) -> tf.data.Dataset:
with FileLock(os.path.expanduser("~/.mnist_lock")):
(x_train, y_train), _ = tf.keras.datasets.mnist.load_data()
# The `x` arrays are in uint8 and have values in the [0, 255] range.
# You need to convert them to float32 with values in the [0, 1] range.
x_train = x_train / np.float32(255)
y_train = y_train.astype(np.int64)
train_dataset = (
tf.data.Dataset.from_tensor_slices((x_train, y_train))
.shuffle(60000)
.repeat()
.batch(batch_size)
)
return train_dataset
def build_cnn_model() -> tf.keras.Model:
model = tf.keras.Sequential(
[
tf.keras.Input(shape=(28, 28)),
tf.keras.layers.Reshape(target_shape=(28, 28, 1)),
tf.keras.layers.Conv2D(32, 3, activation="relu"),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dense(10),
]
)
return model
def train_func(config: dict):
per_worker_batch_size = config.get("batch_size", 64)
epochs = config.get("epochs", 3)
steps_per_epoch = config.get("steps_per_epoch", 70)
tf_config = json.loads(os.environ["TF_CONFIG"])
num_workers = len(tf_config["cluster"]["worker"])
strategy = tf.distribute.MultiWorkerMirroredStrategy()
global_batch_size = per_worker_batch_size * num_workers
multi_worker_dataset = mnist_dataset(global_batch_size)
with strategy.scope():
# Model building/compiling need to be within `strategy.scope()`.
multi_worker_model = build_cnn_model()
learning_rate = config.get("lr", 0.001)
multi_worker_model.compile(
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=tf.keras.optimizers.SGD(learning_rate=learning_rate),
metrics=["accuracy"],
)
history = multi_worker_model.fit(
multi_worker_dataset,
epochs=epochs,
steps_per_epoch=steps_per_epoch,
callbacks=[ReportCheckpointCallback()],
)
results = history.history
return results
def train_tensorflow_mnist(
num_workers: int = 2,
use_gpu: bool = False,
epochs: int = 4,
storage_path: str = None,
) -> Result:
config = {"lr": 1e-3, "batch_size": 64, "epochs": epochs}
trainer = TensorflowTrainer(
train_loop_per_worker=train_func,
train_loop_config=config,
scaling_config=ScalingConfig(num_workers=num_workers, use_gpu=use_gpu),
run_config=RunConfig(storage_path=storage_path),
)
results = trainer.fit()
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--address", required=False, type=str, help="the address to use for Ray"
)
parser.add_argument(
"--num-workers",
"-n",
type=int,
default=2,
help="Sets number of workers for training.",
)
parser.add_argument(
"--use-gpu", action="store_true", default=False, help="Enables GPU training"
)
parser.add_argument(
"--epochs", type=int, default=3, help="Number of epochs to train for."
)
parser.add_argument(
"--smoke-test",
action="store_true",
default=False,
help="Finish quickly for testing.",
)
args, _ = parser.parse_known_args()
import ray
if args.smoke_test:
# 2 workers, 1 for trainer, 1 for datasets
num_gpus = args.num_workers if args.use_gpu else 0
ray.init(num_cpus=4, num_gpus=num_gpus)
train_tensorflow_mnist(num_workers=2, use_gpu=args.use_gpu)
else:
ray.init(address=args.address)
train_tensorflow_mnist(
num_workers=args.num_workers, use_gpu=args.use_gpu, epochs=args.epochs
)
See also#
Ray Train Examples for more use cases.
Distributed Tensorflow & Keras for a tutorial.