Training with TensorFlow and Ray Train#

This basic example runs distributed training of a TensorFlow model on MNIST with Ray Train.

Code example#

# This example showcases how to use Tensorflow with Ray Train.
# Original code:
# https://www.tensorflow.org/tutorials/distribute/multi_worker_with_keras
import argparse
import json
import os

import numpy as np
import tensorflow as tf
from filelock import FileLock

from ray.air.integrations.keras import ReportCheckpointCallback
from ray.train import Result, RunConfig, ScalingConfig
from ray.train.tensorflow import TensorflowTrainer


def mnist_dataset(batch_size: int) -> tf.data.Dataset:
    with FileLock(os.path.expanduser("~/.mnist_lock")):
        (x_train, y_train), _ = tf.keras.datasets.mnist.load_data()
    # The `x` arrays are in uint8 and have values in the [0, 255] range.
    # You need to convert them to float32 with values in the [0, 1] range.
    x_train = x_train / np.float32(255)
    y_train = y_train.astype(np.int64)
    train_dataset = (
        tf.data.Dataset.from_tensor_slices((x_train, y_train))
        .shuffle(60000)
        .repeat()
        .batch(batch_size)
    )
    return train_dataset


def build_cnn_model() -> tf.keras.Model:
    model = tf.keras.Sequential(
        [
            tf.keras.Input(shape=(28, 28)),
            tf.keras.layers.Reshape(target_shape=(28, 28, 1)),
            tf.keras.layers.Conv2D(32, 3, activation="relu"),
            tf.keras.layers.Flatten(),
            tf.keras.layers.Dense(128, activation="relu"),
            tf.keras.layers.Dense(10),
        ]
    )
    return model


def train_func(config: dict):
    per_worker_batch_size = config.get("batch_size", 64)
    epochs = config.get("epochs", 3)
    steps_per_epoch = config.get("steps_per_epoch", 70)

    tf_config = json.loads(os.environ["TF_CONFIG"])
    num_workers = len(tf_config["cluster"]["worker"])

    strategy = tf.distribute.MultiWorkerMirroredStrategy()

    global_batch_size = per_worker_batch_size * num_workers
    multi_worker_dataset = mnist_dataset(global_batch_size)

    with strategy.scope():
        # Model building/compiling need to be within `strategy.scope()`.
        multi_worker_model = build_cnn_model()
        learning_rate = config.get("lr", 0.001)
        multi_worker_model.compile(
            loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
            optimizer=tf.keras.optimizers.SGD(learning_rate=learning_rate),
            metrics=["accuracy"],
        )

    history = multi_worker_model.fit(
        multi_worker_dataset,
        epochs=epochs,
        steps_per_epoch=steps_per_epoch,
        callbacks=[ReportCheckpointCallback()],
    )
    results = history.history
    return results


def train_tensorflow_mnist(
    num_workers: int = 2,
    use_gpu: bool = False,
    epochs: int = 4,
    storage_path: str = None,
) -> Result:
    config = {"lr": 1e-3, "batch_size": 64, "epochs": epochs}
    trainer = TensorflowTrainer(
        train_loop_per_worker=train_func,
        train_loop_config=config,
        scaling_config=ScalingConfig(num_workers=num_workers, use_gpu=use_gpu),
        run_config=RunConfig(storage_path=storage_path),
    )
    results = trainer.fit()
    return results


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--address", required=False, type=str, help="the address to use for Ray"
    )
    parser.add_argument(
        "--num-workers",
        "-n",
        type=int,
        default=2,
        help="Sets number of workers for training.",
    )
    parser.add_argument(
        "--use-gpu", action="store_true", default=False, help="Enables GPU training"
    )
    parser.add_argument(
        "--epochs", type=int, default=3, help="Number of epochs to train for."
    )
    parser.add_argument(
        "--smoke-test",
        action="store_true",
        default=False,
        help="Finish quickly for testing.",
    )

    args, _ = parser.parse_known_args()

    import ray

    if args.smoke_test:
        # 2 workers, 1 for trainer, 1 for datasets
        num_gpus = args.num_workers if args.use_gpu else 0
        ray.init(num_cpus=4, num_gpus=num_gpus)
        train_tensorflow_mnist(num_workers=2, use_gpu=args.use_gpu)
    else:
        ray.init(address=args.address)
        train_tensorflow_mnist(
            num_workers=args.num_workers, use_gpu=args.use_gpu, epochs=args.epochs
        )

See also#