ray.rllib.utils.schedules.scheduler.Scheduler.__init__#
- Scheduler.__init__(fixed_value_or_schedule: float | List[List[int | float]] | List[Tuple[int, int | float]], *, framework: str = 'torch', device: str | None = None)[source]#
Initializes a Scheduler instance.
- Parameters:
fixed_value_or_schedule – A fixed, constant value (in case no schedule should be used) or a schedule configuration in the format of [[timestep, value], [timestep, value], …] Intermediary timesteps will be assigned to linerarly interpolated values. A schedule config’s first entry must start with timestep 0, i.e.: [[0, initial_value], […]].
framework – The framework string, for which to create the tensor variable that hold the current value. This is the variable that can be used in the graph, e.g. in a loss function.
device – Optional device (for torch) to place the tensor variable on.