ray.rllib.core.learner.learner.Learner.compute_loss_for_module#

abstract Learner.compute_loss_for_module(*, module_id: str, config: AlgorithmConfig, batch: Dict[str, Any], fwd_out: Dict[str, numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor]) numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor[source]#

Computes the loss for a single module.

Think of this as computing loss for a single agent. For multi-agent use-cases that require more complicated computation for loss, consider overriding the compute_losses method instead.

Parameters:
  • module_id – The id of the module.

  • config – The AlgorithmConfig specific to the given module_id.

  • batch – The sample batch for this particular module.

  • fwd_out – The output of the forward pass for this particular module.

Returns:

A single total loss tensor. If you have more than one optimizer on the provided module_id and would like to compute gradients separately using these different optimizers, simply add up the individual loss terms for each optimizer and return the sum. Also, for recording/logging any individual loss terms, you can use the Learner.metrics.log_value( key=..., value=...) or Learner.metrics.log_dict() APIs. See: MetricsLogger for more information.