ray.rllib.algorithms.algorithm_config.AlgorithmConfig.overrides#
- classmethod AlgorithmConfig.overrides(**kwargs)[source]#
Generates and validates a set of config key/value pairs (passed via kwargs).
Validation whether given config keys are valid is done immediately upon construction (by comparing against the properties of a default AlgorithmConfig object of this class). Allows combination with a full AlgorithmConfig object to yield a new AlgorithmConfig object.
Used anywhere, we would like to enable the user to only define a few config settings that would change with respect to some main config, e.g. in multi-agent setups and evaluation configs.
from ray.rllib.algorithms.ppo import PPOConfig from ray.rllib.policy.policy import PolicySpec config = ( PPOConfig() .multi_agent( policies={ "pol0": PolicySpec(config=PPOConfig.overrides(lambda_=0.95)) }, ) )
from ray.rllib.algorithms.algorithm_config import AlgorithmConfig from ray.rllib.algorithms.ppo import PPOConfig config = ( PPOConfig() .evaluation( evaluation_num_env_runners=1, evaluation_interval=1, evaluation_config=AlgorithmConfig.overrides(explore=False), ) )
- Returns:
A dict mapping valid config property-names to values.
- Raises:
KeyError – In case a non-existing property name (kwargs key) is being passed in. Valid property names are taken from a default AlgorithmConfig object of
cls
.