ray.rllib.algorithms.algorithm_config.AlgorithmConfig.debugging#

AlgorithmConfig.debugging(*, logger_creator: ~typing.Callable[[], ~ray.tune.logger.logger.Logger] | None = <ray.rllib.utils.from_config._NotProvided object>, logger_config: dict | None = <ray.rllib.utils.from_config._NotProvided object>, log_level: str | None = <ray.rllib.utils.from_config._NotProvided object>, log_sys_usage: bool | None = <ray.rllib.utils.from_config._NotProvided object>, fake_sampler: bool | None = <ray.rllib.utils.from_config._NotProvided object>, seed: int | None = <ray.rllib.utils.from_config._NotProvided object>) AlgorithmConfig[source]#

Sets the config’s debugging settings.

Parameters:
  • logger_creator – Callable that creates a ray.tune.Logger object. If unspecified, a default logger is created.

  • logger_config – Define logger-specific configuration to be used inside Logger Default value None allows overwriting with nested dicts.

  • log_level – Set the ray.rllib.* log level for the agent process and its workers. Should be one of DEBUG, INFO, WARN, or ERROR. The DEBUG level also periodically prints out summaries of relevant internal dataflow (this is also printed out once at startup at the INFO level).

  • log_sys_usage – Log system resource metrics to results. This requires psutil to be installed for sys stats, and gputil for GPU metrics.

  • fake_sampler – Use fake (infinite speed) sampler. For testing only.

  • seed – This argument, in conjunction with worker_index, sets the random seed of each worker, so that identically configured trials have identical results. This makes experiments reproducible.

Returns:

This updated AlgorithmConfig object.