ray.data.Dataset.drop_columns#
- Dataset.drop_columns(cols: List[str], *, compute: str | None = None, concurrency: int | Tuple[int, int] | None = None, **ray_remote_args) Dataset [source]#
Drop one or more columns from the dataset.
Examples
>>> import ray >>> ds = ray.data.read_parquet("s3://anonymous@ray-example-data/iris.parquet") >>> ds.schema() Column Type ------ ---- sepal.length double sepal.width double petal.length double petal.width double variety string >>> ds.drop_columns(["variety"]).schema() Column Type ------ ---- sepal.length double sepal.width double petal.length double petal.width double
Time complexity: O(dataset size / parallelism)
- Parameters:
cols – Names of the columns to drop. If any name does not exist, an exception is raised. Column names must be unique.
compute – This argument is deprecated. Use
concurrency
argument.concurrency – The number of Ray workers to use concurrently. For a fixed-sized worker pool of size
n
, specifyconcurrency=n
. For an autoscaling worker pool fromm
ton
workers, specifyconcurrency=(m, n)
.ray_remote_args – Additional resource requirements to request from Ray (e.g., num_gpus=1 to request GPUs for the map tasks). See
ray.remote()
for details.