Source code for ray.tune.logger.csv

import csv
import logging
from pathlib import Path
from typing import TYPE_CHECKING, Dict, TextIO

from ray.air.constants import EXPR_PROGRESS_FILE
from ray.tune.logger.logger import _LOGGER_DEPRECATION_WARNING, Logger, LoggerCallback
from ray.tune.utils import flatten_dict
from ray.util.annotations import Deprecated, PublicAPI

if TYPE_CHECKING:
    from ray.tune.experiment.trial import Trial  # noqa: F401

logger = logging.getLogger(__name__)


@Deprecated(
    message=_LOGGER_DEPRECATION_WARNING.format(
        old="CSVLogger", new="ray.tune.csv.CSVLoggerCallback"
    ),
    warning=True,
)
@PublicAPI
class CSVLogger(Logger):
    """Logs results to progress.csv under the trial directory.

    Automatically flattens nested dicts in the result dict before writing
    to csv:

        {"a": {"b": 1, "c": 2}} -> {"a/b": 1, "a/c": 2}

    """

    def _init(self):
        self._initialized = False

    def _maybe_init(self):
        """CSV outputted with Headers as first set of results."""
        if not self._initialized:
            progress_file = Path(self.logdir, EXPR_PROGRESS_FILE)
            self._continuing = (
                progress_file.exists() and progress_file.stat().st_size > 0
            )
            self._file = progress_file.open("a")
            self._csv_out = None
            self._initialized = True

    def on_result(self, result: Dict):
        self._maybe_init()

        tmp = result.copy()
        if "config" in tmp:
            del tmp["config"]
        result = flatten_dict(tmp, delimiter="/")
        if self._csv_out is None:
            self._csv_out = csv.DictWriter(self._file, result.keys())
            if not self._continuing:
                self._csv_out.writeheader()
        self._csv_out.writerow(
            {k: v for k, v in result.items() if k in self._csv_out.fieldnames}
        )
        self._file.flush()

    def flush(self):
        if self._initialized and not self._file.closed:
            self._file.flush()

    def close(self):
        if self._initialized:
            self._file.close()


[docs] @PublicAPI class CSVLoggerCallback(LoggerCallback): """Logs results to progress.csv under the trial directory. Automatically flattens nested dicts in the result dict before writing to csv: {"a": {"b": 1, "c": 2}} -> {"a/b": 1, "a/c": 2} """ _SAVED_FILE_TEMPLATES = [EXPR_PROGRESS_FILE] def __init__(self): self._trial_continue: Dict["Trial", bool] = {} self._trial_files: Dict["Trial", TextIO] = {} self._trial_csv: Dict["Trial", csv.DictWriter] = {} def _setup_trial(self, trial: "Trial"): if trial in self._trial_files: self._trial_files[trial].close() # Make sure logdir exists trial.init_local_path() local_file_path = Path(trial.local_path, EXPR_PROGRESS_FILE) # Resume the file from remote storage. self._restore_from_remote(EXPR_PROGRESS_FILE, trial) self._trial_continue[trial] = ( local_file_path.exists() and local_file_path.stat().st_size > 0 ) self._trial_files[trial] = local_file_path.open("at") self._trial_csv[trial] = None def log_trial_result(self, iteration: int, trial: "Trial", result: Dict): if trial not in self._trial_files: self._setup_trial(trial) tmp = result.copy() tmp.pop("config", None) result = flatten_dict(tmp, delimiter="/") if not self._trial_csv[trial]: self._trial_csv[trial] = csv.DictWriter( self._trial_files[trial], result.keys() ) if not self._trial_continue[trial]: self._trial_csv[trial].writeheader() self._trial_csv[trial].writerow( {k: v for k, v in result.items() if k in self._trial_csv[trial].fieldnames} ) self._trial_files[trial].flush() def log_trial_end(self, trial: "Trial", failed: bool = False): if trial not in self._trial_files: return del self._trial_csv[trial] self._trial_files[trial].close() del self._trial_files[trial]