Source code for ray.rllib.algorithms.ppo.ppo

"""
Proximal Policy Optimization (PPO)
==================================

This file defines the distributed Algorithm class for proximal policy
optimization.
See `ppo_[tf|torch]_policy.py` for the definition of the policy loss.

Detailed documentation: https://docs.ray.io/en/master/rllib-algorithms.html#ppo
"""

import logging
from typing import Any, Dict, List, Optional, Type, Union, TYPE_CHECKING

from ray.rllib.algorithms.algorithm import Algorithm
from ray.rllib.algorithms.algorithm_config import AlgorithmConfig, NotProvided
from ray.rllib.core.rl_module.rl_module import RLModuleSpec
from ray.rllib.execution.rollout_ops import (
    standardize_fields,
    synchronous_parallel_sample,
)
from ray.rllib.execution.train_ops import (
    train_one_step,
    multi_gpu_train_one_step,
)
from ray.rllib.policy.policy import Policy
from ray.rllib.utils.annotations import OldAPIStack, override
from ray.rllib.utils.deprecation import DEPRECATED_VALUE
from ray.rllib.utils.metrics import (
    ENV_RUNNER_RESULTS,
    ENV_RUNNER_SAMPLING_TIMER,
    LEARNER_RESULTS,
    LEARNER_UPDATE_TIMER,
    NUM_AGENT_STEPS_SAMPLED,
    NUM_ENV_STEPS_SAMPLED,
    NUM_ENV_STEPS_SAMPLED_LIFETIME,
    SYNCH_WORKER_WEIGHTS_TIMER,
    SAMPLE_TIMER,
    TIMERS,
    ALL_MODULES,
)
from ray.rllib.utils.metrics.learner_info import LEARNER_STATS_KEY
from ray.rllib.utils.schedules.scheduler import Scheduler
from ray.rllib.utils.typing import ResultDict
from ray.util.debug import log_once

if TYPE_CHECKING:
    from ray.rllib.core.learner.learner import Learner


logger = logging.getLogger(__name__)

LEARNER_RESULTS_VF_LOSS_UNCLIPPED_KEY = "vf_loss_unclipped"
LEARNER_RESULTS_VF_EXPLAINED_VAR_KEY = "vf_explained_var"
LEARNER_RESULTS_KL_KEY = "mean_kl_loss"
LEARNER_RESULTS_CURR_KL_COEFF_KEY = "curr_kl_coeff"
LEARNER_RESULTS_CURR_ENTROPY_COEFF_KEY = "curr_entropy_coeff"


[docs] class PPOConfig(AlgorithmConfig): """Defines a configuration class from which a PPO Algorithm can be built. .. testcode:: from ray.rllib.algorithms.ppo import PPOConfig config = PPOConfig() config.environment("CartPole-v1") config.env_runners(num_env_runners=1) config.training( gamma=0.9, lr=0.01, kl_coeff=0.3, train_batch_size_per_learner=256 ) # Build a Algorithm object from the config and run 1 training iteration. algo = config.build() algo.train() .. testcode:: from ray.rllib.algorithms.ppo import PPOConfig from ray import air from ray import tune config = ( PPOConfig() # Set the config object's env. .environment(env="CartPole-v1") # Update the config object's training parameters. .training( lr=0.001, clip_param=0.2 ) ) tune.Tuner( "PPO", run_config=air.RunConfig(stop={"training_iteration": 1}), param_space=config, ).fit() .. testoutput:: :hide: ... """ def __init__(self, algo_class=None): """Initializes a PPOConfig instance.""" self.exploration_config = { # The Exploration class to use. In the simplest case, this is the name # (str) of any class present in the `rllib.utils.exploration` package. # You can also provide the python class directly or the full location # of your class (e.g. "ray.rllib.utils.exploration.epsilon_greedy. # EpsilonGreedy"). "type": "StochasticSampling", # Add constructor kwargs here (if any). } super().__init__(algo_class=algo_class or PPO) # fmt: off # __sphinx_doc_begin__ self.lr = 5e-5 self.rollout_fragment_length = "auto" self.train_batch_size = 4000 # PPO specific settings: self.use_critic = True self.use_gae = True self.num_epochs = 30 self.minibatch_size = 128 self.shuffle_batch_per_epoch = True self.lambda_ = 1.0 self.use_kl_loss = True self.kl_coeff = 0.2 self.kl_target = 0.01 self.vf_loss_coeff = 1.0 self.entropy_coeff = 0.0 self.clip_param = 0.3 self.vf_clip_param = 10.0 self.grad_clip = None # Override some of AlgorithmConfig's default values with PPO-specific values. self.num_env_runners = 2 # __sphinx_doc_end__ # fmt: on self.model["vf_share_layers"] = False # @OldAPIStack self.entropy_coeff_schedule = None # @OldAPIStack self.lr_schedule = None # @OldAPIStack # Deprecated keys. self.sgd_minibatch_size = DEPRECATED_VALUE self.vf_share_layers = DEPRECATED_VALUE @override(AlgorithmConfig) def get_default_rl_module_spec(self) -> RLModuleSpec: if self.framework_str == "torch": from ray.rllib.algorithms.ppo.torch.default_ppo_torch_rl_module import ( DefaultPPOTorchRLModule, ) return RLModuleSpec(module_class=DefaultPPOTorchRLModule) else: raise ValueError( f"The framework {self.framework_str} is not supported. " "Use either 'torch' or 'tf2'." ) @override(AlgorithmConfig) def get_default_learner_class(self) -> Union[Type["Learner"], str]: if self.framework_str == "torch": from ray.rllib.algorithms.ppo.torch.ppo_torch_learner import ( PPOTorchLearner, ) return PPOTorchLearner elif self.framework_str in ["tf2", "tf"]: raise ValueError( "TensorFlow is no longer supported on the new API stack! " "Use `framework='torch'`." ) else: raise ValueError( f"The framework {self.framework_str} is not supported. " "Use `framework='torch'`." )
[docs] @override(AlgorithmConfig) def training( self, *, use_critic: Optional[bool] = NotProvided, use_gae: Optional[bool] = NotProvided, lambda_: Optional[float] = NotProvided, use_kl_loss: Optional[bool] = NotProvided, kl_coeff: Optional[float] = NotProvided, kl_target: Optional[float] = NotProvided, vf_loss_coeff: Optional[float] = NotProvided, entropy_coeff: Optional[float] = NotProvided, entropy_coeff_schedule: Optional[List[List[Union[int, float]]]] = NotProvided, clip_param: Optional[float] = NotProvided, vf_clip_param: Optional[float] = NotProvided, grad_clip: Optional[float] = NotProvided, # @OldAPIStack lr_schedule: Optional[List[List[Union[int, float]]]] = NotProvided, # Deprecated. vf_share_layers=DEPRECATED_VALUE, **kwargs, ) -> "PPOConfig": """Sets the training related configuration. Args: use_critic: Should use a critic as a baseline (otherwise don't use value baseline; required for using GAE). use_gae: If true, use the Generalized Advantage Estimator (GAE) with a value function, see https://arxiv.org/pdf/1506.02438.pdf. lambda_: The lambda parameter for General Advantage Estimation (GAE). Defines the exponential weight used between actually measured rewards vs value function estimates over multiple time steps. Specifically, `lambda_` balances short-term, low-variance estimates against long-term, high-variance returns. A `lambda_` of 0.0 makes the GAE rely only on immediate rewards (and vf predictions from there on, reducing variance, but increasing bias), while a `lambda_` of 1.0 only incorporates vf predictions at the truncation points of the given episodes or episode chunks (reducing bias but increasing variance). use_kl_loss: Whether to use the KL-term in the loss function. kl_coeff: Initial coefficient for KL divergence. kl_target: Target value for KL divergence. vf_loss_coeff: Coefficient of the value function loss. IMPORTANT: you must tune this if you set vf_share_layers=True inside your model's config. entropy_coeff: The entropy coefficient (float) or entropy coefficient schedule in the format of [[timestep, coeff-value], [timestep, coeff-value], ...] In case of a schedule, intermediary timesteps will be assigned to linearly interpolated coefficient values. A schedule config's first entry must start with timestep 0, i.e.: [[0, initial_value], [...]]. clip_param: The PPO clip parameter. vf_clip_param: Clip param for the value function. Note that this is sensitive to the scale of the rewards. If your expected V is large, increase this. grad_clip: If specified, clip the global norm of gradients by this amount. Returns: This updated AlgorithmConfig object. """ # Pass kwargs onto super's `training()` method. super().training(**kwargs) if use_critic is not NotProvided: self.use_critic = use_critic # TODO (Kourosh) This is experimental. # Don't forget to remove .use_critic from algorithm config. if use_gae is not NotProvided: self.use_gae = use_gae if lambda_ is not NotProvided: self.lambda_ = lambda_ if use_kl_loss is not NotProvided: self.use_kl_loss = use_kl_loss if kl_coeff is not NotProvided: self.kl_coeff = kl_coeff if kl_target is not NotProvided: self.kl_target = kl_target if vf_loss_coeff is not NotProvided: self.vf_loss_coeff = vf_loss_coeff if entropy_coeff is not NotProvided: self.entropy_coeff = entropy_coeff if clip_param is not NotProvided: self.clip_param = clip_param if vf_clip_param is not NotProvided: self.vf_clip_param = vf_clip_param if grad_clip is not NotProvided: self.grad_clip = grad_clip # TODO (sven): Remove these once new API stack is only option for PPO. if lr_schedule is not NotProvided: self.lr_schedule = lr_schedule if entropy_coeff_schedule is not NotProvided: self.entropy_coeff_schedule = entropy_coeff_schedule return self
@override(AlgorithmConfig) def validate(self) -> None: # Call super's validation method. super().validate() # Synchronous sampling, on-policy/PPO algos -> Check mismatches between # `rollout_fragment_length` and `train_batch_size_per_learner` to avoid user # confusion. # TODO (sven): Make rollout_fragment_length a property and create a private # attribute to store (possibly) user provided value (or "auto") in. Deprecate # `self.get_rollout_fragment_length()`. self.validate_train_batch_size_vs_rollout_fragment_length() # SGD minibatch size must be smaller than train_batch_size (b/c # we subsample a batch of `minibatch_size` from the train-batch for # each `num_epochs`). if ( not self.enable_rl_module_and_learner and self.minibatch_size > self.train_batch_size ): self._value_error( f"`minibatch_size` ({self.minibatch_size}) must be <= " f"`train_batch_size` ({self.train_batch_size}). In PPO, the train batch" f" will be split into {self.minibatch_size} chunks, each of which " f"is iterated over (used for updating the policy) {self.num_epochs} " "times." ) elif self.enable_rl_module_and_learner: mbs = self.minibatch_size tbs = self.train_batch_size_per_learner or self.train_batch_size if isinstance(mbs, int) and isinstance(tbs, int) and mbs > tbs: self._value_error( f"`minibatch_size` ({mbs}) must be <= " f"`train_batch_size_per_learner` ({tbs}). In PPO, the train batch" f" will be split into {mbs} chunks, each of which is iterated over " f"(used for updating the policy) {self.num_epochs} times." ) # Episodes may only be truncated (and passed into PPO's # `postprocessing_fn`), iff generalized advantage estimation is used # (value function estimate at end of truncated episode to estimate # remaining value). if ( not self.in_evaluation and self.batch_mode == "truncate_episodes" and not self.use_gae ): self._value_error( "Episode truncation is not supported without a value " "function (to estimate the return at the end of the truncated" " trajectory). Consider setting " "batch_mode=complete_episodes." ) # New API stack checks. if self.enable_rl_module_and_learner: # `lr_schedule` checking. if self.lr_schedule is not None: self._value_error( "`lr_schedule` is deprecated and must be None! Use the " "`lr` setting to setup a schedule." ) if self.entropy_coeff_schedule is not None: self._value_error( "`entropy_coeff_schedule` is deprecated and must be None! Use the " "`entropy_coeff` setting to setup a schedule." ) Scheduler.validate( fixed_value_or_schedule=self.entropy_coeff, setting_name="entropy_coeff", description="entropy coefficient", ) if isinstance(self.entropy_coeff, float) and self.entropy_coeff < 0.0: self._value_error("`entropy_coeff` must be >= 0.0") @property @override(AlgorithmConfig) def _model_config_auto_includes(self) -> Dict[str, Any]: return super()._model_config_auto_includes | {"vf_share_layers": False}
class PPO(Algorithm): @classmethod @override(Algorithm) def get_default_config(cls) -> AlgorithmConfig: return PPOConfig() @classmethod @override(Algorithm) def get_default_policy_class( cls, config: AlgorithmConfig ) -> Optional[Type[Policy]]: if config["framework"] == "torch": from ray.rllib.algorithms.ppo.ppo_torch_policy import PPOTorchPolicy return PPOTorchPolicy elif config["framework"] == "tf": from ray.rllib.algorithms.ppo.ppo_tf_policy import PPOTF1Policy return PPOTF1Policy else: from ray.rllib.algorithms.ppo.ppo_tf_policy import PPOTF2Policy return PPOTF2Policy @override(Algorithm) def training_step(self) -> None: # Old API stack (Policy, RolloutWorker, Connector). if not self.config.enable_env_runner_and_connector_v2: return self._training_step_old_api_stack() # Collect batches from sample workers until we have a full batch. with self.metrics.log_time((TIMERS, ENV_RUNNER_SAMPLING_TIMER)): # Sample in parallel from the workers. if self.config.count_steps_by == "agent_steps": episodes, env_runner_results = synchronous_parallel_sample( worker_set=self.env_runner_group, max_agent_steps=self.config.total_train_batch_size, sample_timeout_s=self.config.sample_timeout_s, _uses_new_env_runners=( self.config.enable_env_runner_and_connector_v2 ), _return_metrics=True, ) else: episodes, env_runner_results = synchronous_parallel_sample( worker_set=self.env_runner_group, max_env_steps=self.config.total_train_batch_size, sample_timeout_s=self.config.sample_timeout_s, _uses_new_env_runners=( self.config.enable_env_runner_and_connector_v2 ), _return_metrics=True, ) # Return early if all our workers failed. if not episodes: return # Reduce EnvRunner metrics over the n EnvRunners. self.metrics.merge_and_log_n_dicts( env_runner_results, key=ENV_RUNNER_RESULTS ) # Perform a learner update step on the collected episodes. with self.metrics.log_time((TIMERS, LEARNER_UPDATE_TIMER)): learner_results = self.learner_group.update_from_episodes( episodes=episodes, timesteps={ NUM_ENV_STEPS_SAMPLED_LIFETIME: ( self.metrics.peek( (ENV_RUNNER_RESULTS, NUM_ENV_STEPS_SAMPLED_LIFETIME) ) ), }, num_epochs=self.config.num_epochs, minibatch_size=self.config.minibatch_size, shuffle_batch_per_epoch=self.config.shuffle_batch_per_epoch, ) self.metrics.merge_and_log_n_dicts(learner_results, key=LEARNER_RESULTS) # Update weights - after learning on the local worker - on all remote # workers. with self.metrics.log_time((TIMERS, SYNCH_WORKER_WEIGHTS_TIMER)): # The train results's loss keys are ModuleIDs to their loss values. # But we also return a total_loss key at the same level as the ModuleID # keys. So we need to subtract that to get the correct set of ModuleIDs to # update. # TODO (sven): We should also not be using `learner_results` as a messenger # to infer which modules to update. `policies_to_train` might also NOT work # as it might be a very large set (100s of Modules) vs a smaller Modules # set that's present in the current train batch. modules_to_update = set(learner_results[0].keys()) - {ALL_MODULES} self.env_runner_group.sync_weights( # Sync weights from learner_group to all EnvRunners. from_worker_or_learner_group=self.learner_group, policies=modules_to_update, inference_only=True, ) @OldAPIStack def _training_step_old_api_stack(self) -> ResultDict: # Collect batches from sample workers until we have a full batch. with self._timers[SAMPLE_TIMER]: if self.config.count_steps_by == "agent_steps": train_batch = synchronous_parallel_sample( worker_set=self.env_runner_group, max_agent_steps=self.config.total_train_batch_size, sample_timeout_s=self.config.sample_timeout_s, ) else: train_batch = synchronous_parallel_sample( worker_set=self.env_runner_group, max_env_steps=self.config.total_train_batch_size, sample_timeout_s=self.config.sample_timeout_s, ) # Return early if all our workers failed. if not train_batch: return {} train_batch = train_batch.as_multi_agent() self._counters[NUM_AGENT_STEPS_SAMPLED] += train_batch.agent_steps() self._counters[NUM_ENV_STEPS_SAMPLED] += train_batch.env_steps() # Standardize advantages. train_batch = standardize_fields(train_batch, ["advantages"]) if self.config.simple_optimizer: train_results = train_one_step(self, train_batch) else: train_results = multi_gpu_train_one_step(self, train_batch) policies_to_update = list(train_results.keys()) global_vars = { "timestep": self._counters[NUM_AGENT_STEPS_SAMPLED], # TODO (sven): num_grad_updates per each policy should be # accessible via `train_results` (and get rid of global_vars). "num_grad_updates_per_policy": { pid: self.env_runner.policy_map[pid].num_grad_updates for pid in policies_to_update }, } # Update weights - after learning on the local worker - on all remote # workers. with self._timers[SYNCH_WORKER_WEIGHTS_TIMER]: if self.env_runner_group.num_remote_workers() > 0: from_worker_or_learner_group = None self.env_runner_group.sync_weights( from_worker_or_learner_group=from_worker_or_learner_group, policies=policies_to_update, global_vars=global_vars, ) # For each policy: Update KL scale and warn about possible issues for policy_id, policy_info in train_results.items(): # Update KL loss with dynamic scaling # for each (possibly multiagent) policy we are training kl_divergence = policy_info[LEARNER_STATS_KEY].get("kl") self.get_policy(policy_id).update_kl(kl_divergence) # Warn about excessively high value function loss scaled_vf_loss = ( self.config.vf_loss_coeff * policy_info[LEARNER_STATS_KEY]["vf_loss"] ) policy_loss = policy_info[LEARNER_STATS_KEY]["policy_loss"] if ( log_once("ppo_warned_lr_ratio") and self.config.get("model", {}).get("vf_share_layers") and scaled_vf_loss > 100 ): logger.warning( "The magnitude of your value function loss for policy: {} is " "extremely large ({}) compared to the policy loss ({}). This " "can prevent the policy from learning. Consider scaling down " "the VF loss by reducing vf_loss_coeff, or disabling " "vf_share_layers.".format(policy_id, scaled_vf_loss, policy_loss) ) # Warn about bad clipping configs. train_batch.policy_batches[policy_id].set_get_interceptor(None) mean_reward = train_batch.policy_batches[policy_id]["rewards"].mean() if ( log_once("ppo_warned_vf_clip") and mean_reward > self.config.vf_clip_param ): self.warned_vf_clip = True logger.warning( f"The mean reward returned from the environment is {mean_reward}" f" but the vf_clip_param is set to {self.config['vf_clip_param']}." f" Consider increasing it for policy: {policy_id} to improve" " value function convergence." ) # Update global vars on local worker as well. # TODO (simon): At least in RolloutWorker obsolete I guess as called in # `sync_weights()` called above if remote workers. Can we call this # where `set_weights()` is called on the local_worker? self.env_runner.set_global_vars(global_vars) return train_results