Source code for ray.rllib.algorithms.dqn.dqn

"""
Deep Q-Networks (DQN, Rainbow, Parametric DQN)
==============================================

This file defines the distributed Algorithm class for the Deep Q-Networks
algorithm. See `dqn_[tf|torch]_policy.py` for the definition of the policies.

Detailed documentation:
https://docs.ray.io/en/master/rllib-algorithms.html#deep-q-networks-dqn-rainbow-parametric-dqn
"""  # noqa: E501

from collections import defaultdict
import logging
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
import numpy as np

from ray.rllib.algorithms.algorithm import Algorithm
from ray.rllib.algorithms.algorithm_config import AlgorithmConfig, NotProvided
from ray.rllib.algorithms.dqn.dqn_tf_policy import DQNTFPolicy
from ray.rllib.algorithms.dqn.dqn_torch_policy import DQNTorchPolicy
from ray.rllib.core.learner import Learner
from ray.rllib.core.rl_module.rl_module import RLModuleSpec
from ray.rllib.execution.rollout_ops import (
    synchronous_parallel_sample,
)
from ray.rllib.policy.sample_batch import MultiAgentBatch
from ray.rllib.execution.train_ops import (
    train_one_step,
    multi_gpu_train_one_step,
)
from ray.rllib.policy.policy import Policy
from ray.rllib.utils import deep_update
from ray.rllib.utils.annotations import override
from ray.rllib.utils.numpy import convert_to_numpy
from ray.rllib.utils.replay_buffers.utils import (
    update_priorities_in_episode_replay_buffer,
    update_priorities_in_replay_buffer,
    validate_buffer_config,
)
from ray.rllib.utils.typing import ResultDict
from ray.rllib.utils.metrics import (
    ALL_MODULES,
    ENV_RUNNER_RESULTS,
    ENV_RUNNER_SAMPLING_TIMER,
    LAST_TARGET_UPDATE_TS,
    LEARNER_RESULTS,
    LEARNER_UPDATE_TIMER,
    NUM_AGENT_STEPS_SAMPLED,
    NUM_AGENT_STEPS_SAMPLED_LIFETIME,
    NUM_ENV_STEPS_SAMPLED,
    NUM_ENV_STEPS_SAMPLED_LIFETIME,
    NUM_TARGET_UPDATES,
    REPLAY_BUFFER_ADD_DATA_TIMER,
    REPLAY_BUFFER_RESULTS,
    REPLAY_BUFFER_SAMPLE_TIMER,
    REPLAY_BUFFER_UPDATE_PRIOS_TIMER,
    SAMPLE_TIMER,
    SYNCH_WORKER_WEIGHTS_TIMER,
    TD_ERROR_KEY,
    TIMERS,
)
from ray.rllib.utils.deprecation import DEPRECATED_VALUE
from ray.rllib.utils.replay_buffers.utils import sample_min_n_steps_from_buffer
from ray.rllib.utils.typing import (
    LearningRateOrSchedule,
    RLModuleSpecType,
    SampleBatchType,
)

logger = logging.getLogger(__name__)


[docs] class DQNConfig(AlgorithmConfig): r"""Defines a configuration class from which a DQN Algorithm can be built. .. testcode:: from ray.rllib.algorithms.dqn.dqn import DQNConfig config = ( DQNConfig() .environment("CartPole-v1") .training(replay_buffer_config={ "type": "PrioritizedEpisodeReplayBuffer", "capacity": 60000, "alpha": 0.5, "beta": 0.5, }) .env_runners(num_env_runners=1) ) algo = config.build() algo.train() algo.stop() .. testcode:: from ray.rllib.algorithms.dqn.dqn import DQNConfig from ray import air from ray import tune config = ( DQNConfig() .environment("CartPole-v1") .training( num_atoms=tune.grid_search([1,]) ) ) tune.Tuner( "DQN", run_config=air.RunConfig(stop={"training_iteration":1}), param_space=config, ).fit() .. testoutput:: :hide: ... """ def __init__(self, algo_class=None): """Initializes a DQNConfig instance.""" self.exploration_config = { "type": "EpsilonGreedy", "initial_epsilon": 1.0, "final_epsilon": 0.02, "epsilon_timesteps": 10000, } super().__init__(algo_class=algo_class or DQN) # Overrides of AlgorithmConfig defaults # `env_runners()` # Set to `self.n_step`, if 'auto'. self.rollout_fragment_length: Union[int, str] = "auto" # New stack uses `epsilon` as either a constant value or a scheduler # defined like this. # TODO (simon): Ensure that users can understand how to provide epsilon. # (sven): Should we add this to `self.env_runners(epsilon=..)`? self.epsilon = [(0, 1.0), (10000, 0.05)] # `training()` self.grad_clip = 40.0 # Note: Only when using enable_rl_module_and_learner=True can the clipping mode # be configured by the user. On the old API stack, RLlib will always clip by # global_norm, no matter the value of `grad_clip_by`. self.grad_clip_by = "global_norm" self.lr = 5e-4 self.train_batch_size = 32 # `evaluation()` self.evaluation(evaluation_config=AlgorithmConfig.overrides(explore=False)) # `reporting()` self.min_time_s_per_iteration = None self.min_sample_timesteps_per_iteration = 1000 # DQN specific config settings. # fmt: off # __sphinx_doc_begin__ self.target_network_update_freq = 500 self.num_steps_sampled_before_learning_starts = 1000 self.store_buffer_in_checkpoints = False self.adam_epsilon = 1e-8 self.tau = 1.0 self.num_atoms = 1 self.v_min = -10.0 self.v_max = 10.0 self.noisy = False self.sigma0 = 0.5 self.dueling = True self.hiddens = [256] self.double_q = True self.n_step = 1 self.before_learn_on_batch = None self.training_intensity = None self.td_error_loss_fn = "huber" self.categorical_distribution_temperature = 1.0 # The burn-in for stateful `RLModule`s. self.burn_in_len = 0 # Replay buffer configuration. self.replay_buffer_config = { "type": "PrioritizedEpisodeReplayBuffer", # Size of the replay buffer. Note that if async_updates is set, # then each worker will have a replay buffer of this size. "capacity": 50000, "alpha": 0.6, # Beta parameter for sampling from prioritized replay buffer. "beta": 0.4, } # fmt: on # __sphinx_doc_end__ self.lr_schedule = None # @OldAPIStack # Deprecated self.buffer_size = DEPRECATED_VALUE self.prioritized_replay = DEPRECATED_VALUE self.learning_starts = DEPRECATED_VALUE self.replay_batch_size = DEPRECATED_VALUE # Can not use DEPRECATED_VALUE here because -1 is a common config value self.replay_sequence_length = None self.prioritized_replay_alpha = DEPRECATED_VALUE self.prioritized_replay_beta = DEPRECATED_VALUE self.prioritized_replay_eps = DEPRECATED_VALUE
[docs] @override(AlgorithmConfig) def training( self, *, target_network_update_freq: Optional[int] = NotProvided, replay_buffer_config: Optional[dict] = NotProvided, store_buffer_in_checkpoints: Optional[bool] = NotProvided, lr_schedule: Optional[List[List[Union[int, float]]]] = NotProvided, epsilon: Optional[LearningRateOrSchedule] = NotProvided, adam_epsilon: Optional[float] = NotProvided, grad_clip: Optional[int] = NotProvided, num_steps_sampled_before_learning_starts: Optional[int] = NotProvided, tau: Optional[float] = NotProvided, num_atoms: Optional[int] = NotProvided, v_min: Optional[float] = NotProvided, v_max: Optional[float] = NotProvided, noisy: Optional[bool] = NotProvided, sigma0: Optional[float] = NotProvided, dueling: Optional[bool] = NotProvided, hiddens: Optional[int] = NotProvided, double_q: Optional[bool] = NotProvided, n_step: Optional[Union[int, Tuple[int, int]]] = NotProvided, before_learn_on_batch: Callable[ [Type[MultiAgentBatch], List[Type[Policy]], Type[int]], Type[MultiAgentBatch], ] = NotProvided, training_intensity: Optional[float] = NotProvided, td_error_loss_fn: Optional[str] = NotProvided, categorical_distribution_temperature: Optional[float] = NotProvided, burn_in_len: Optional[int] = NotProvided, **kwargs, ) -> "DQNConfig": """Sets the training related configuration. Args: target_network_update_freq: Update the target network every `target_network_update_freq` sample steps. replay_buffer_config: Replay buffer config. Examples: { "_enable_replay_buffer_api": True, "type": "MultiAgentReplayBuffer", "capacity": 50000, "replay_sequence_length": 1, } - OR - { "_enable_replay_buffer_api": True, "type": "MultiAgentPrioritizedReplayBuffer", "capacity": 50000, "prioritized_replay_alpha": 0.6, "prioritized_replay_beta": 0.4, "prioritized_replay_eps": 1e-6, "replay_sequence_length": 1, } - Where - prioritized_replay_alpha: Alpha parameter controls the degree of prioritization in the buffer. In other words, when a buffer sample has a higher temporal-difference error, with how much more probability should it drawn to use to update the parametrized Q-network. 0.0 corresponds to uniform probability. Setting much above 1.0 may quickly result as the sampling distribution could become heavily “pointy” with low entropy. prioritized_replay_beta: Beta parameter controls the degree of importance sampling which suppresses the influence of gradient updates from samples that have higher probability of being sampled via alpha parameter and the temporal-difference error. prioritized_replay_eps: Epsilon parameter sets the baseline probability for sampling so that when the temporal-difference error of a sample is zero, there is still a chance of drawing the sample. store_buffer_in_checkpoints: Set this to True, if you want the contents of your buffer(s) to be stored in any saved checkpoints as well. Warnings will be created if: - This is True AND restoring from a checkpoint that contains no buffer data. - This is False AND restoring from a checkpoint that does contain buffer data. epsilon: Epsilon exploration schedule. In the format of [[timestep, value], [timestep, value], ...]. A schedule must start from timestep 0. adam_epsilon: Adam optimizer's epsilon hyper parameter. grad_clip: If not None, clip gradients during optimization at this value. num_steps_sampled_before_learning_starts: Number of timesteps to collect from rollout workers before we start sampling from replay buffers for learning. Whether we count this in agent steps or environment steps depends on config.multi_agent(count_steps_by=..). tau: Update the target by \tau * policy + (1-\tau) * target_policy. num_atoms: Number of atoms for representing the distribution of return. When this is greater than 1, distributional Q-learning is used. v_min: Minimum value estimation v_max: Maximum value estimation noisy: Whether to use noisy network to aid exploration. This adds parametric noise to the model weights. sigma0: Control the initial parameter noise for noisy nets. dueling: Whether to use dueling DQN. hiddens: Dense-layer setup for each the advantage branch and the value branch double_q: Whether to use double DQN. n_step: N-step target updates. If >1, sars' tuples in trajectories will be postprocessed to become sa[discounted sum of R][s t+n] tuples. An integer will be interpreted as a fixed n-step value. If a tuple of 2 ints is provided here, the n-step value will be drawn for each sample(!) in the train batch from a uniform distribution over the closed interval defined by `[n_step[0], n_step[1]]`. before_learn_on_batch: Callback to run before learning on a multi-agent batch of experiences. training_intensity: The intensity with which to update the model (vs collecting samples from the env). If None, uses "natural" values of: `train_batch_size` / (`rollout_fragment_length` x `num_env_runners` x `num_envs_per_env_runner`). If not None, will make sure that the ratio between timesteps inserted into and sampled from the buffer matches the given values. Example: training_intensity=1000.0 train_batch_size=250 rollout_fragment_length=1 num_env_runners=1 (or 0) num_envs_per_env_runner=1 -> natural value = 250 / 1 = 250.0 -> will make sure that replay+train op will be executed 4x asoften as rollout+insert op (4 * 250 = 1000). See: rllib/algorithms/dqn/dqn.py::calculate_rr_weights for further details. td_error_loss_fn: "huber" or "mse". loss function for calculating TD error when num_atoms is 1. Note that if num_atoms is > 1, this parameter is simply ignored, and softmax cross entropy loss will be used. categorical_distribution_temperature: Set the temperature parameter used by Categorical action distribution. A valid temperature is in the range of [0, 1]. Note that this mostly affects evaluation since TD error uses argmax for return calculation. burn_in_len: The burn-in period for a stateful RLModule. It allows the Learner to utilize the initial `burn_in_len` steps in a replay sequence solely for unrolling the network and establishing a typical starting state. The network is then updated on the remaining steps of the sequence. This process helps mitigate issues stemming from a poor initial state - zero or an outdated recorded state. Consider setting this parameter to a positive integer if your stateful RLModule faces convergence challenges or exhibits signs of catastrophic forgetting. Returns: This updated AlgorithmConfig object. """ # Pass kwargs onto super's `training()` method. super().training(**kwargs) if target_network_update_freq is not NotProvided: self.target_network_update_freq = target_network_update_freq if replay_buffer_config is not NotProvided: # Override entire `replay_buffer_config` if `type` key changes. # Update, if `type` key remains the same or is not specified. new_replay_buffer_config = deep_update( {"replay_buffer_config": self.replay_buffer_config}, {"replay_buffer_config": replay_buffer_config}, False, ["replay_buffer_config"], ["replay_buffer_config"], ) self.replay_buffer_config = new_replay_buffer_config["replay_buffer_config"] if store_buffer_in_checkpoints is not NotProvided: self.store_buffer_in_checkpoints = store_buffer_in_checkpoints if lr_schedule is not NotProvided: self.lr_schedule = lr_schedule if epsilon is not NotProvided: self.epsilon = epsilon if adam_epsilon is not NotProvided: self.adam_epsilon = adam_epsilon if grad_clip is not NotProvided: self.grad_clip = grad_clip if num_steps_sampled_before_learning_starts is not NotProvided: self.num_steps_sampled_before_learning_starts = ( num_steps_sampled_before_learning_starts ) if tau is not NotProvided: self.tau = tau if num_atoms is not NotProvided: self.num_atoms = num_atoms if v_min is not NotProvided: self.v_min = v_min if v_max is not NotProvided: self.v_max = v_max if noisy is not NotProvided: self.noisy = noisy if sigma0 is not NotProvided: self.sigma0 = sigma0 if dueling is not NotProvided: self.dueling = dueling if hiddens is not NotProvided: self.hiddens = hiddens if double_q is not NotProvided: self.double_q = double_q if n_step is not NotProvided: self.n_step = n_step if before_learn_on_batch is not NotProvided: self.before_learn_on_batch = before_learn_on_batch if training_intensity is not NotProvided: self.training_intensity = training_intensity if td_error_loss_fn is not NotProvided: self.td_error_loss_fn = td_error_loss_fn if categorical_distribution_temperature is not NotProvided: self.categorical_distribution_temperature = ( categorical_distribution_temperature ) if burn_in_len is not NotProvided: self.burn_in_len = burn_in_len return self
@override(AlgorithmConfig) def validate(self) -> None: # Call super's validation method. super().validate() if self.enable_rl_module_and_learner: # `lr_schedule` checking. if self.lr_schedule is not None: self._value_error( "`lr_schedule` is deprecated and must be None! Use the " "`lr` setting to setup a schedule." ) else: if not self.in_evaluation: validate_buffer_config(self) # TODO (simon): Find a clean solution to deal with configuration configs # when using the new API stack. if self.exploration_config["type"] == "ParameterNoise": if self.batch_mode != "complete_episodes": self._value_error( "ParameterNoise Exploration requires `batch_mode` to be " "'complete_episodes'. Try setting `config.env_runners(" "batch_mode='complete_episodes')`." ) if self.noisy: self._value_error( "ParameterNoise Exploration and `noisy` network cannot be" " used at the same time!" ) if self.td_error_loss_fn not in ["huber", "mse"]: self._value_error("`td_error_loss_fn` must be 'huber' or 'mse'!") # Check rollout_fragment_length to be compatible with n_step. if ( not self.in_evaluation and self.rollout_fragment_length != "auto" and self.rollout_fragment_length < self.n_step ): self._value_error( f"Your `rollout_fragment_length` ({self.rollout_fragment_length}) is " f"smaller than `n_step` ({self.n_step})! " "Try setting config.env_runners(rollout_fragment_length=" f"{self.n_step})." ) # Check, if the `max_seq_len` is longer then the burn-in. if ( "max_seq_len" in self.model_config and 0 < self.model_config["max_seq_len"] <= self.burn_in_len ): raise ValueError( f"Your defined `burn_in_len`={self.burn_in_len} is larger or equal " f"`max_seq_len`={self.model_config['max_seq_len']}! Either decrease " "the `burn_in_len` or increase your `max_seq_len`." ) # Validate that we use the corresponding `EpisodeReplayBuffer` when using # episodes. # TODO (sven, simon): Implement the multi-agent case for replay buffers. from ray.rllib.utils.replay_buffers.episode_replay_buffer import ( EpisodeReplayBuffer, ) if ( self.enable_env_runner_and_connector_v2 and not isinstance(self.replay_buffer_config["type"], str) and not issubclass(self.replay_buffer_config["type"], EpisodeReplayBuffer) ): self._value_error( "When using the new `EnvRunner API` the replay buffer must be of type " "`EpisodeReplayBuffer`." ) elif not self.enable_env_runner_and_connector_v2 and ( ( isinstance(self.replay_buffer_config["type"], str) and "Episode" in self.replay_buffer_config["type"] ) or issubclass(self.replay_buffer_config["type"], EpisodeReplayBuffer) ): self._value_error( "When using the old API stack the replay buffer must not be of type " "`EpisodeReplayBuffer`! We suggest you use the following config to run " "DQN on the old API stack: `config.training(replay_buffer_config={" "'type': 'MultiAgentPrioritizedReplayBuffer', " "'prioritized_replay_alpha': [alpha], " "'prioritized_replay_beta': [beta], " "'prioritized_replay_eps': [eps], " "})`." ) @override(AlgorithmConfig) def get_rollout_fragment_length(self, worker_index: int = 0) -> int: if self.rollout_fragment_length == "auto": return ( self.n_step[1] if isinstance(self.n_step, (tuple, list)) else self.n_step ) else: return self.rollout_fragment_length @override(AlgorithmConfig) def get_default_rl_module_spec(self) -> RLModuleSpecType: if self.framework_str == "torch": from ray.rllib.algorithms.dqn.torch.default_dqn_torch_rl_module import ( DefaultDQNTorchRLModule, ) return RLModuleSpec( module_class=DefaultDQNTorchRLModule, model_config=self.model_config, ) else: raise ValueError( f"The framework {self.framework_str} is not supported! " "Use `config.framework('torch')` instead." ) @property @override(AlgorithmConfig) def _model_config_auto_includes(self) -> Dict[str, Any]: return super()._model_config_auto_includes | { "double_q": self.double_q, "dueling": self.dueling, "epsilon": self.epsilon, "num_atoms": self.num_atoms, "std_init": self.sigma0, "v_max": self.v_max, "v_min": self.v_min, } @override(AlgorithmConfig) def get_default_learner_class(self) -> Union[Type["Learner"], str]: if self.framework_str == "torch": from ray.rllib.algorithms.dqn.torch.dqn_torch_learner import ( DQNTorchLearner, ) return DQNTorchLearner else: raise ValueError( f"The framework {self.framework_str} is not supported! " "Use `config.framework('torch')` instead." )
def calculate_rr_weights(config: AlgorithmConfig) -> List[float]: """Calculate the round robin weights for the rollout and train steps""" if not config.training_intensity: return [1, 1] # Calculate the "native ratio" as: # [train-batch-size] / [size of env-rolled-out sampled data] # This is to set freshly rollout-collected data in relation to # the data we pull from the replay buffer (which also contains old # samples). native_ratio = config.total_train_batch_size / ( config.get_rollout_fragment_length() * config.num_envs_per_env_runner # Add one to workers because the local # worker usually collects experiences as well, and we avoid division by zero. * max(config.num_env_runners + 1, 1) ) # Training intensity is specified in terms of # (steps_replayed / steps_sampled), so adjust for the native ratio. sample_and_train_weight = config.training_intensity / native_ratio if sample_and_train_weight < 1: return [int(np.round(1 / sample_and_train_weight)), 1] else: return [1, int(np.round(sample_and_train_weight))] class DQN(Algorithm): @classmethod @override(Algorithm) def get_default_config(cls) -> AlgorithmConfig: return DQNConfig() @classmethod @override(Algorithm) def get_default_policy_class( cls, config: AlgorithmConfig ) -> Optional[Type[Policy]]: if config["framework"] == "torch": return DQNTorchPolicy else: return DQNTFPolicy @override(Algorithm) def training_step(self) -> None: """DQN training iteration function. Each training iteration, we: - Sample (MultiAgentBatch) from workers. - Store new samples in replay buffer. - Sample training batch (MultiAgentBatch) from replay buffer. - Learn on training batch. - Update remote workers' new policy weights. - Update target network every `target_network_update_freq` sample steps. - Return all collected metrics for the iteration. Returns: The results dict from executing the training iteration. """ # Old API stack (Policy, RolloutWorker, Connector). if not self.config.enable_env_runner_and_connector_v2: return self._training_step_old_api_stack() # New API stack (RLModule, Learner, EnvRunner, ConnectorV2). return self._training_step_new_api_stack() def _training_step_new_api_stack(self): # Alternate between storing and sampling and training. store_weight, sample_and_train_weight = calculate_rr_weights(self.config) # Run multiple sampling + storing to buffer iterations. for _ in range(store_weight): with self.metrics.log_time((TIMERS, ENV_RUNNER_SAMPLING_TIMER)): # Sample in parallel from workers. episodes, env_runner_results = synchronous_parallel_sample( worker_set=self.env_runner_group, concat=True, sample_timeout_s=self.config.sample_timeout_s, _uses_new_env_runners=True, _return_metrics=True, ) # Reduce EnvRunner metrics over the n EnvRunners. self.metrics.merge_and_log_n_dicts( env_runner_results, key=ENV_RUNNER_RESULTS ) # Add the sampled experiences to the replay buffer. with self.metrics.log_time((TIMERS, REPLAY_BUFFER_ADD_DATA_TIMER)): self.local_replay_buffer.add(episodes) if self.config.count_steps_by == "agent_steps": current_ts = sum( self.metrics.peek( (ENV_RUNNER_RESULTS, NUM_AGENT_STEPS_SAMPLED_LIFETIME), default={} ).values() ) else: current_ts = self.metrics.peek( (ENV_RUNNER_RESULTS, NUM_ENV_STEPS_SAMPLED_LIFETIME), default=0 ) # If enough experiences have been sampled start training. if current_ts >= self.config.num_steps_sampled_before_learning_starts: # Run multiple sample-from-buffer and update iterations. for _ in range(sample_and_train_weight): # Sample a list of episodes used for learning from the replay buffer. with self.metrics.log_time((TIMERS, REPLAY_BUFFER_SAMPLE_TIMER)): episodes = self.local_replay_buffer.sample( num_items=self.config.total_train_batch_size, n_step=self.config.n_step, # In case an `EpisodeReplayBuffer` is used we need to provide # the sequence length. batch_length_T=self.env_runner.module.is_stateful() * self.config.model_config.get("max_seq_len", 0), lookback=int(self.env_runner.module.is_stateful()), # TODO (simon): Implement `burn_in_len` in SAC and remove this # if-else clause. min_batch_length_T=self.config.burn_in_len if hasattr(self.config, "burn_in_len") else 0, gamma=self.config.gamma, beta=self.config.replay_buffer_config.get("beta"), sample_episodes=True, ) # Get the replay buffer metrics. replay_buffer_results = self.local_replay_buffer.get_metrics() self.metrics.merge_and_log_n_dicts( [replay_buffer_results], key=REPLAY_BUFFER_RESULTS ) # Perform an update on the buffer-sampled train batch. with self.metrics.log_time((TIMERS, LEARNER_UPDATE_TIMER)): learner_results = self.learner_group.update_from_episodes( episodes=episodes, timesteps={ NUM_ENV_STEPS_SAMPLED_LIFETIME: ( self.metrics.peek( (ENV_RUNNER_RESULTS, NUM_ENV_STEPS_SAMPLED_LIFETIME) ) ), NUM_AGENT_STEPS_SAMPLED_LIFETIME: ( self.metrics.peek( ( ENV_RUNNER_RESULTS, NUM_AGENT_STEPS_SAMPLED_LIFETIME, ) ) ), }, ) # Isolate TD-errors from result dicts (we should not log these to # disk or WandB, they might be very large). td_errors = defaultdict(list) for res in learner_results: for module_id, module_results in res.items(): if TD_ERROR_KEY in module_results: td_errors[module_id].extend( convert_to_numpy( module_results.pop(TD_ERROR_KEY).peek() ) ) td_errors = { module_id: {TD_ERROR_KEY: np.concatenate(s, axis=0)} for module_id, s in td_errors.items() } self.metrics.merge_and_log_n_dicts( learner_results, key=LEARNER_RESULTS ) # Update replay buffer priorities. with self.metrics.log_time((TIMERS, REPLAY_BUFFER_UPDATE_PRIOS_TIMER)): update_priorities_in_episode_replay_buffer( replay_buffer=self.local_replay_buffer, td_errors=td_errors, ) # Update weights and global_vars - after learning on the local worker - # on all remote workers. with self.metrics.log_time((TIMERS, SYNCH_WORKER_WEIGHTS_TIMER)): modules_to_update = set(learner_results[0].keys()) - {ALL_MODULES} # NOTE: the new API stack does not use global vars. self.env_runner_group.sync_weights( from_worker_or_learner_group=self.learner_group, policies=modules_to_update, global_vars=None, inference_only=True, ) def _training_step_old_api_stack(self) -> ResultDict: """Training step for the old API stack. More specifically this training step relies on `RolloutWorker`. """ train_results = {} # We alternate between storing new samples and sampling and training store_weight, sample_and_train_weight = calculate_rr_weights(self.config) for _ in range(store_weight): # Sample (MultiAgentBatch) from workers. with self._timers[SAMPLE_TIMER]: new_sample_batch: SampleBatchType = synchronous_parallel_sample( worker_set=self.env_runner_group, concat=True, sample_timeout_s=self.config.sample_timeout_s, ) # Return early if all our workers failed. if not new_sample_batch: return {} # Update counters self._counters[NUM_AGENT_STEPS_SAMPLED] += new_sample_batch.agent_steps() self._counters[NUM_ENV_STEPS_SAMPLED] += new_sample_batch.env_steps() # Store new samples in replay buffer. self.local_replay_buffer.add(new_sample_batch) global_vars = { "timestep": self._counters[NUM_ENV_STEPS_SAMPLED], } # Update target network every `target_network_update_freq` sample steps. cur_ts = self._counters[ ( NUM_AGENT_STEPS_SAMPLED if self.config.count_steps_by == "agent_steps" else NUM_ENV_STEPS_SAMPLED ) ] if cur_ts > self.config.num_steps_sampled_before_learning_starts: for _ in range(sample_and_train_weight): # Sample training batch (MultiAgentBatch) from replay buffer. train_batch = sample_min_n_steps_from_buffer( self.local_replay_buffer, self.config.total_train_batch_size, count_by_agent_steps=self.config.count_steps_by == "agent_steps", ) # Postprocess batch before we learn on it post_fn = self.config.get("before_learn_on_batch") or (lambda b, *a: b) train_batch = post_fn(train_batch, self.env_runner_group, self.config) # Learn on training batch. # Use simple optimizer (only for multi-agent or tf-eager; all other # cases should use the multi-GPU optimizer, even if only using 1 GPU) if self.config.get("simple_optimizer") is True: train_results = train_one_step(self, train_batch) else: train_results = multi_gpu_train_one_step(self, train_batch) # Update replay buffer priorities. update_priorities_in_replay_buffer( self.local_replay_buffer, self.config, train_batch, train_results, ) last_update = self._counters[LAST_TARGET_UPDATE_TS] if cur_ts - last_update >= self.config.target_network_update_freq: to_update = self.env_runner.get_policies_to_train() self.env_runner.foreach_policy_to_train( lambda p, pid, to_update=to_update: ( pid in to_update and p.update_target() ) ) self._counters[NUM_TARGET_UPDATES] += 1 self._counters[LAST_TARGET_UPDATE_TS] = cur_ts # Update weights and global_vars - after learning on the local worker - # on all remote workers. with self._timers[SYNCH_WORKER_WEIGHTS_TIMER]: self.env_runner_group.sync_weights(global_vars=global_vars) # Return all collected metrics for the iteration. return train_results