Source code for ray.data.preprocessors.normalizer
from typing import List
import numpy as np
import pandas as pd
from ray.data.preprocessor import Preprocessor
from ray.util.annotations import PublicAPI
[docs]
@PublicAPI(stability="alpha")
class Normalizer(Preprocessor):
r"""Scales each sample to have unit norm.
This preprocessor works by dividing each sample (i.e., row) by the sample's norm.
The general formula is given by
.. math::
s' = \frac{s}{\lVert s \rVert_p}
where :math:`s` is the sample, :math:`s'` is the transformed sample,
:math:\lVert s \rVert`, and :math:`p` is the norm type.
The following norms are supported:
* `"l1"` (:math:`L^1`): Sum of the absolute values.
* `"l2"` (:math:`L^2`): Square root of the sum of the squared values.
* `"max"` (:math:`L^\infty`): Maximum value.
Examples:
>>> import pandas as pd
>>> import ray
>>> from ray.data.preprocessors import Normalizer
>>>
>>> df = pd.DataFrame({"X1": [1, 1], "X2": [1, 0], "X3": [0, 1]})
>>> ds = ray.data.from_pandas(df) # doctest: +SKIP
>>> ds.to_pandas() # doctest: +SKIP
X1 X2 X3
0 1 1 0
1 1 0 1
The :math:`L^2`-norm of the first sample is :math:`\sqrt{2}`, and the
:math:`L^2`-norm of the second sample is :math:`1`.
>>> preprocessor = Normalizer(columns=["X1", "X2"])
>>> preprocessor.fit_transform(ds).to_pandas() # doctest: +SKIP
X1 X2 X3
0 0.707107 0.707107 0
1 1.000000 0.000000 1
The :math:`L^1`-norm of the first sample is :math:`2`, and the
:math:`L^1`-norm of the second sample is :math:`1`.
>>> preprocessor = Normalizer(columns=["X1", "X2"], norm="l1")
>>> preprocessor.fit_transform(ds).to_pandas() # doctest: +SKIP
X1 X2 X3
0 0.5 0.5 0
1 1.0 0.0 1
The :math:`L^\infty`-norm of the both samples is :math:`1`.
>>> preprocessor = Normalizer(columns=["X1", "X2"], norm="max")
>>> preprocessor.fit_transform(ds).to_pandas() # doctest: +SKIP
X1 X2 X3
0 1.0 1.0 0
1 1.0 0.0 1
Args:
columns: The columns to scale. For each row, these colmumns are scaled to
unit-norm.
norm: The norm to use. The supported values are ``"l1"``, ``"l2"``, or
``"max"``. Defaults to ``"l2"``.
Raises:
ValueError: if ``norm`` is not ``"l1"``, ``"l2"``, or ``"max"``.
"""
_norm_fns = {
"l1": lambda cols: np.abs(cols).sum(axis=1),
"l2": lambda cols: np.sqrt(np.power(cols, 2).sum(axis=1)),
"max": lambda cols: np.max(abs(cols), axis=1),
}
_is_fittable = False
def __init__(self, columns: List[str], norm="l2"):
self.columns = columns
self.norm = norm
if norm not in self._norm_fns:
raise ValueError(
f"Norm {norm} is not supported."
f"Supported values are: {self._norm_fns.keys()}"
)
def _transform_pandas(self, df: pd.DataFrame):
columns = df.loc[:, self.columns]
column_norms = self._norm_fns[self.norm](columns)
df.loc[:, self.columns] = columns.div(column_norms, axis=0)
return df
def __repr__(self):
return (
f"{self.__class__.__name__}(columns={self.columns!r}, norm={self.norm!r})"
)