import collections
import logging
import os
import time
from dataclasses import dataclass
from enum import Enum
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Iterator,
List,
Literal,
Optional,
Protocol,
Tuple,
TypeVar,
Union,
)
import numpy as np
import ray
from ray import DynamicObjectRefGenerator
from ray.air.util.tensor_extensions.arrow import ArrowConversionError
from ray.data._internal.util import _check_pyarrow_version, _truncated_repr
from ray.types import ObjectRef
from ray.util import log_once
from ray.util.annotations import DeveloperAPI
import psutil
try:
import resource
except ImportError:
resource = None
if TYPE_CHECKING:
import pandas
import pyarrow
from ray.data._internal.block_builder import BlockBuilder
from ray.data._internal.planner.exchange.sort_task_spec import SortKey
from ray.data.aggregate import AggregateFn
T = TypeVar("T", contravariant=True)
U = TypeVar("U", covariant=True)
KeyType = TypeVar("KeyType")
AggType = TypeVar("AggType")
# Represents a batch of records to be stored in the Ray object store.
#
# Block data can be accessed in a uniform way via ``BlockAccessors`` like`
# ``ArrowBlockAccessor``.
Block = Union["pyarrow.Table", "pandas.DataFrame"]
logger = logging.getLogger(__name__)
@DeveloperAPI
class BlockType(Enum):
ARROW = "arrow"
PANDAS = "pandas"
# User-facing data batch type. This is the data type for data that is supplied to and
# returned from batch UDFs.
DataBatch = Union["pyarrow.Table", "pandas.DataFrame", Dict[str, np.ndarray]]
# User-facing data column type. This is the data type for data that is supplied to and
# returned from column UDFs.
DataBatchColumn = Union[
"pyarrow.ChunkedArray", "pyarrow.Array", "pandas.Series", np.ndarray
]
# A class type that implements __call__.
CallableClass = type
class _CallableClassProtocol(Protocol[T, U]):
def __call__(self, __arg: T) -> Union[U, Iterator[U]]:
...
# A user defined function passed to map, map_batches, ec.
UserDefinedFunction = Union[
Callable[[T], U],
Callable[[T], Iterator[U]],
"_CallableClassProtocol",
]
# A list of block references pending computation by a single task. For example,
# this may be the output of a task reading a file.
BlockPartition = List[Tuple[ObjectRef[Block], "BlockMetadata"]]
# The metadata that describes the output of a BlockPartition. This has the
# same type as the metadata that describes each block in the partition.
BlockPartitionMetadata = List["BlockMetadata"]
# TODO(ekl/chengsu): replace this with just
# `DynamicObjectRefGenerator` once block splitting
# is on by default. When block splitting is off, the type is a plain block.
MaybeBlockPartition = Union[Block, DynamicObjectRefGenerator]
VALID_BATCH_FORMATS = ["pandas", "pyarrow", "numpy", None]
DEFAULT_BATCH_FORMAT = "numpy"
def _apply_batch_format(given_batch_format: Optional[str]) -> str:
if given_batch_format == "default":
given_batch_format = DEFAULT_BATCH_FORMAT
if given_batch_format not in VALID_BATCH_FORMATS:
raise ValueError(
f"The given batch format {given_batch_format} isn't allowed (must be one of"
f" {VALID_BATCH_FORMATS})."
)
return given_batch_format
def _apply_batch_size(
given_batch_size: Optional[Union[int, Literal["default"]]]
) -> Optional[int]:
if given_batch_size == "default":
return ray.data.context.DEFAULT_BATCH_SIZE
else:
return given_batch_size
[docs]
@DeveloperAPI
class BlockExecStats:
"""Execution stats for this block.
Attributes:
wall_time_s: The wall-clock time it took to compute this block.
cpu_time_s: The CPU time it took to compute this block.
node_id: A unique id for the node that computed this block.
"""
def __init__(self):
self.start_time_s: Optional[float] = None
self.end_time_s: Optional[float] = None
self.wall_time_s: Optional[float] = None
self.udf_time_s: Optional[float] = 0
self.cpu_time_s: Optional[float] = None
self.node_id = ray.runtime_context.get_runtime_context().get_node_id()
# Max memory usage. May be an overestimate since we do not
# differentiate from previous tasks on the same worker.
self.max_rss_bytes: int = 0
self.task_idx: Optional[int] = None
@staticmethod
def builder() -> "_BlockExecStatsBuilder":
return _BlockExecStatsBuilder()
def __repr__(self):
return repr(
{
"wall_time_s": self.wall_time_s,
"cpu_time_s": self.cpu_time_s,
"udf_time_s": self.udf_time_s,
"node_id": self.node_id,
}
)
class _BlockExecStatsBuilder:
"""Helper class for building block stats.
When this class is created, we record the start time. When build() is
called, the time delta is saved as part of the stats.
"""
def __init__(self):
self.start_time = time.perf_counter()
self.start_cpu = time.process_time()
def build(self) -> "BlockExecStats":
self.end_time = time.perf_counter()
self.end_cpu = time.process_time()
stats = BlockExecStats()
stats.start_time_s = self.start_time
stats.end_time_s = self.end_time
stats.wall_time_s = self.end_time - self.start_time
stats.cpu_time_s = self.end_cpu - self.start_cpu
if resource is None:
# NOTE(swang): resource package is not supported on Windows. This
# is only the memory usage at the end of the task, not the peak
# memory.
process = psutil.Process(os.getpid())
stats.max_rss_bytes = int(process.memory_info().rss)
else:
stats.max_rss_bytes = int(
resource.getrusage(resource.RUSAGE_SELF).ru_maxrss * 1e3
)
return stats
[docs]
@DeveloperAPI
class BlockAccessor:
"""Provides accessor methods for a specific block.
Ideally, we wouldn't need a separate accessor classes for blocks. However,
this is needed if we want to support storing ``pyarrow.Table`` directly
as a top-level Ray object, without a wrapping class (issue #17186).
"""
[docs]
def num_rows(self) -> int:
"""Return the number of rows contained in this block."""
raise NotImplementedError
[docs]
def iter_rows(self, public_row_format: bool) -> Iterator[T]:
"""Iterate over the rows of this block.
Args:
public_row_format: Whether to cast rows into the public Dict row
format (this incurs extra copy conversions).
"""
raise NotImplementedError
[docs]
def slice(self, start: int, end: int, copy: bool) -> Block:
"""Return a slice of this block.
Args:
start: The starting index of the slice (inclusive).
end: The ending index of the slice (exclusive).
copy: Whether to perform a data copy for the slice.
Returns:
The sliced block result.
"""
raise NotImplementedError
[docs]
def take(self, indices: List[int]) -> Block:
"""Return a new block containing the provided row indices.
Args:
indices: The row indices to return.
Returns:
A new block containing the provided row indices.
"""
raise NotImplementedError
[docs]
def select(self, columns: List[Optional[str]]) -> Block:
"""Return a new block containing the provided columns."""
raise NotImplementedError
[docs]
def rename_columns(self, columns_rename: Dict[str, str]) -> Block:
"""Return the block reflecting the renamed columns."""
raise NotImplementedError
[docs]
def random_shuffle(self, random_seed: Optional[int]) -> Block:
"""Randomly shuffle this block."""
raise NotImplementedError
[docs]
def to_pandas(self) -> "pandas.DataFrame":
"""Convert this block into a Pandas dataframe."""
raise NotImplementedError
[docs]
def to_numpy(
self, columns: Optional[Union[str, List[str]]] = None
) -> Union[np.ndarray, Dict[str, np.ndarray]]:
"""Convert this block (or columns of block) into a NumPy ndarray.
Args:
columns: Name of columns to convert, or None if converting all columns.
"""
raise NotImplementedError
[docs]
def to_arrow(self) -> "pyarrow.Table":
"""Convert this block into an Arrow table."""
raise NotImplementedError
[docs]
def to_block(self) -> Block:
"""Return the base block that this accessor wraps."""
raise NotImplementedError
[docs]
def to_default(self) -> Block:
"""Return the default data format for this accessor."""
return self.to_block()
[docs]
def size_bytes(self) -> int:
"""Return the approximate size in bytes of this block."""
raise NotImplementedError
[docs]
def schema(self) -> Union[type, "pyarrow.lib.Schema"]:
"""Return the Python type or pyarrow schema of this block."""
raise NotImplementedError
[docs]
def zip(self, other: "Block") -> "Block":
"""Zip this block with another block of the same type and size."""
raise NotImplementedError
[docs]
@staticmethod
def builder() -> "BlockBuilder":
"""Create a builder for this block type."""
raise NotImplementedError
[docs]
@classmethod
def batch_to_block(
cls,
batch: DataBatch,
block_type: Optional[BlockType] = None,
) -> Block:
"""Create a block from user-facing data formats."""
if isinstance(batch, np.ndarray):
raise ValueError(
f"Error validating {_truncated_repr(batch)}: "
"Standalone numpy arrays are not "
"allowed in Ray 2.5. Return a dict of field -> array, "
"e.g., `{'data': array}` instead of `array`."
)
elif isinstance(batch, collections.abc.Mapping):
if block_type is None or block_type == BlockType.ARROW:
try:
return cls.batch_to_arrow_block(batch)
except ArrowConversionError as e:
if log_once("_fallback_to_pandas_block_warning"):
logger.warning(
f"Failed to convert batch to Arrow due to: {e}; "
f"falling back to Pandas block"
)
if block_type is None:
return cls.batch_to_pandas_block(batch)
else:
raise e
else:
assert block_type == BlockType.PANDAS
return cls.batch_to_pandas_block(batch)
return batch
[docs]
@classmethod
def batch_to_arrow_block(cls, batch: Dict[str, Any]) -> Block:
"""Create an Arrow block from user-facing data formats."""
from ray.data._internal.arrow_block import ArrowBlockBuilder
return ArrowBlockBuilder._table_from_pydict(batch)
[docs]
@classmethod
def batch_to_pandas_block(cls, batch: Dict[str, Any]) -> Block:
"""Create a Pandas block from user-facing data formats."""
from ray.data._internal.pandas_block import PandasBlockAccessor
return PandasBlockAccessor.numpy_to_block(batch)
[docs]
@staticmethod
def for_block(block: Block) -> "BlockAccessor[T]":
"""Create a block accessor for the given block."""
_check_pyarrow_version()
import pandas
import pyarrow
if isinstance(block, pyarrow.Table):
from ray.data._internal.arrow_block import ArrowBlockAccessor
return ArrowBlockAccessor(block)
elif isinstance(block, pandas.DataFrame):
from ray.data._internal.pandas_block import PandasBlockAccessor
return PandasBlockAccessor(block)
elif isinstance(block, bytes):
from ray.data._internal.arrow_block import ArrowBlockAccessor
return ArrowBlockAccessor.from_bytes(block)
elif isinstance(block, list):
raise ValueError(
f"Error validating {_truncated_repr(block)}: "
"Standalone Python objects are not "
"allowed in Ray 2.5. To use Python objects in a dataset, "
"wrap them in a dict of numpy arrays, e.g., "
"return `{'item': batch}` instead of just `batch`."
)
else:
raise TypeError("Not a block type: {} ({})".format(block, type(block)))
[docs]
def sample(self, n_samples: int, sort_key: "SortKey") -> "Block":
"""Return a random sample of items from this block."""
raise NotImplementedError
[docs]
def sort_and_partition(
self, boundaries: List[T], sort_key: "SortKey"
) -> List["Block"]:
"""Return a list of sorted partitions of this block."""
raise NotImplementedError
[docs]
def combine(self, key: "SortKey", aggs: Tuple["AggregateFn"]) -> Block:
"""Combine rows with the same key into an accumulator."""
raise NotImplementedError
[docs]
@staticmethod
def merge_sorted_blocks(
blocks: List["Block"], sort_key: "SortKey"
) -> Tuple[Block, BlockMetadata]:
"""Return a sorted block by merging a list of sorted blocks."""
raise NotImplementedError
[docs]
@staticmethod
def aggregate_combined_blocks(
blocks: List[Block], sort_key: "SortKey", aggs: Tuple["AggregateFn"]
) -> Tuple[Block, BlockMetadata]:
"""Aggregate partially combined and sorted blocks."""
raise NotImplementedError
[docs]
def block_type(self) -> BlockType:
"""Return the block type of this block."""
raise NotImplementedError
def _get_block_boundaries(columns: list[np.ndarray]) -> np.ndarray:
"""Compute boundaries of the groups within a block, which is represented
by a list of 1D numpy arrays for each column. In each column,
NaNs/None are considered to be the same group.
Args:
columns: a list of 1D numpy arrays. This is generally given by the
dictionary values of ``BlockAccessor.to_numpy()``.
Returns:
A list of starting indices of each group and an end index of the last
group, i.e., there are ``num_groups + 1`` entries and the first and last
entries are 0 and ``len(array)`` respectively.
"""
# There are 3 categories: general, numerics with NaN, and categorical with None.
# We only needed to check the last element for NaNs/None, as they are assumed to
# be sorted.
general_arrays = []
num_arrays_with_nan = []
cat_arrays_with_none = []
for arr in columns:
if np.issubdtype(arr.dtype, np.number) and np.isnan(arr[-1]):
num_arrays_with_nan.append(arr)
elif not np.issubdtype(arr.dtype, np.number) and arr[-1] is None:
cat_arrays_with_none.append(arr)
else:
general_arrays.append(arr)
# Compute the difference between each pair of elements. Handle the cases
# where neighboring elements are both NaN or None. Output as a list of
# boolean arrays.
diffs = []
if len(general_arrays) > 0:
diffs.append(
np.vstack([arr[1:] != arr[:-1] for arr in general_arrays]).any(axis=0)
)
if len(num_arrays_with_nan) > 0:
# Two neighboring numeric elements belong to the same group when they are
# 1) both finite and equal
# or 2) both np.nan
diffs.append(
np.vstack(
[
(arr[1:] != arr[:-1])
& (np.isfinite(arr[1:]) | np.isfinite(arr[:-1]))
for arr in num_arrays_with_nan
]
).any(axis=0)
)
if len(cat_arrays_with_none) > 0:
# Two neighboring str/object elements belong to the same group when they are
# 1) both finite and equal
# or 2) both None
diffs.append(
np.vstack(
[
(arr[1:] != arr[:-1])
& ~(np.equal(arr[1:], None) & np.equal(arr[:-1], None))
for arr in cat_arrays_with_none
]
).any(axis=0)
)
# A series of vectorized operations to compute the boundaries:
# - column_stack: stack the bool arrays into a single 2D bool array
# - any() and nonzero(): find the indices where any of the column diffs are True
# - add 1 to get the index of the first element of the next group
# - hstack(): include the 0 and last indices to the boundaries
boundaries = np.hstack(
[
[0],
(np.column_stack(diffs).any(axis=1).nonzero()[0] + 1),
[len(columns[0])],
]
).astype(int)
return boundaries