Source code for

import collections
import os
import time
from dataclasses import dataclass
from typing import (

import numpy as np

import ray
from ray import DynamicObjectRefGenerator
from import _check_pyarrow_version, _truncated_repr
from ray.types import ObjectRef
from ray.util.annotations import DeveloperAPI

import psutil

    import resource
except ImportError:
    resource = None

    import pandas
    import pyarrow

    from import BlockBuilder
    from import SortKey
    from import AggregateFn

T = TypeVar("T", contravariant=True)
U = TypeVar("U", covariant=True)

KeyType = TypeVar("KeyType")
AggType = TypeVar("AggType")

# Represents a batch of records to be stored in the Ray object store.
# Block data can be accessed in a uniform way via ``BlockAccessors`` like`
# ``ArrowBlockAccessor``.
Block = Union["pyarrow.Table", "pandas.DataFrame"]

# User-facing data batch type. This is the data type for data that is supplied to and
# returned from batch UDFs.
DataBatch = Union["pyarrow.Table", "pandas.DataFrame", Dict[str, np.ndarray]]

# A class type that implements __call__.
CallableClass = type

class _CallableClassProtocol(Protocol[T, U]):
    def __call__(self, __arg: T) -> Union[U, Iterator[U]]:

# A user defined function passed to map, map_batches, ec.
UserDefinedFunction = Union[
    Callable[[T], U],
    Callable[[T], Iterator[U]],

# A list of block references pending computation by a single task. For example,
# this may be the output of a task reading a file.
BlockPartition = List[Tuple[ObjectRef[Block], "BlockMetadata"]]

# The metadata that describes the output of a BlockPartition. This has the
# same type as the metadata that describes each block in the partition.
BlockPartitionMetadata = List["BlockMetadata"]

# TODO(ekl/chengsu): replace this with just
# `DynamicObjectRefGenerator` once block splitting
# is on by default. When block splitting is off, the type is a plain block.
MaybeBlockPartition = Union[Block, DynamicObjectRefGenerator]

VALID_BATCH_FORMATS = ["pandas", "pyarrow", "numpy", None]

def _apply_batch_format(given_batch_format: Optional[str]) -> str:
    if given_batch_format == "default":
        given_batch_format = DEFAULT_BATCH_FORMAT
    if given_batch_format not in VALID_BATCH_FORMATS:
        raise ValueError(
            f"The given batch format {given_batch_format} isn't allowed (must be one of"
            f" {VALID_BATCH_FORMATS})."
    return given_batch_format

def _apply_batch_size(
    given_batch_size: Optional[Union[int, Literal["default"]]], use_gpu: bool
) -> Optional[int]:
    if use_gpu and (not given_batch_size or given_batch_size == "default"):
        raise ValueError(
            "`batch_size` must be provided to `map_batches` when requesting GPUs. "
            "The optimal batch size depends on the model, data, and GPU used. "
            "It is recommended to use the largest batch size that doesn't result "
            "in your GPU device running out of memory. You can view the GPU memory "
            "usage via the Ray dashboard."
    elif given_batch_size == "default":
        return given_batch_size

[docs]@DeveloperAPI class BlockExecStats: """Execution stats for this block. Attributes: wall_time_s: The wall-clock time it took to compute this block. cpu_time_s: The CPU time it took to compute this block. node_id: A unique id for the node that computed this block. """ def __init__(self): self.start_time_s: Optional[float] = None self.end_time_s: Optional[float] = None self.wall_time_s: Optional[float] = None self.cpu_time_s: Optional[float] = None self.node_id = ray.runtime_context.get_runtime_context().get_node_id() # Max memory usage. May be an overestimate since we do not # differentiate from previous tasks on the same worker. self.max_rss_bytes: int = 0 self.task_idx: Optional[int] = None @staticmethod def builder() -> "_BlockExecStatsBuilder": return _BlockExecStatsBuilder() def __repr__(self): return repr( { "wall_time_s": self.wall_time_s, "cpu_time_s": self.cpu_time_s, "node_id": self.node_id, } )
class _BlockExecStatsBuilder: """Helper class for building block stats. When this class is created, we record the start time. When build() is called, the time delta is saved as part of the stats. """ def __init__(self): self.start_time = time.perf_counter() self.start_cpu = time.process_time() def build(self) -> "BlockExecStats": self.end_time = time.perf_counter() self.end_cpu = time.process_time() stats = BlockExecStats() stats.start_time_s = self.start_time stats.end_time_s = self.end_time stats.wall_time_s = self.end_time - self.start_time stats.cpu_time_s = self.end_cpu - self.start_cpu if resource is None: # NOTE(swang): resource package is not supported on Windows. This # is only the memory usage at the end of the task, not the peak # memory. process = psutil.Process(os.getpid()) stats.max_rss_bytes = int(process.memory_info().rss) else: stats.max_rss_bytes = int( resource.getrusage(resource.RUSAGE_SELF).ru_maxrss * 1e3 ) return stats
[docs]@DeveloperAPI @dataclass class BlockMetadata: """Metadata about the block.""" #: The number of rows contained in this block, or None. num_rows: Optional[int] #: The approximate size in bytes of this block, or None. size_bytes: Optional[int] #: The pyarrow schema or types of the block elements, or None. schema: Optional[Union[type, "pyarrow.lib.Schema"]] #: The list of file paths used to generate this block, or #: the empty list if indeterminate. input_files: Optional[List[str]] #: Execution stats for this block. exec_stats: Optional[BlockExecStats] def __post_init__(self): if self.input_files is None: self.input_files = [] if self.size_bytes is not None: # Require size_bytes to be int, ray.util.metrics objects # will not take other types like numpy.int64 assert isinstance(self.size_bytes, int)
[docs]@DeveloperAPI class BlockAccessor: """Provides accessor methods for a specific block. Ideally, we wouldn't need a separate accessor classes for blocks. However, this is needed if we want to support storing ``pyarrow.Table`` directly as a top-level Ray object, without a wrapping class (issue #17186). """
[docs] def num_rows(self) -> int: """Return the number of rows contained in this block.""" raise NotImplementedError
[docs] def iter_rows(self, public_row_format: bool) -> Iterator[T]: """Iterate over the rows of this block. Args: public_row_format: Whether to cast rows into the public Dict row format (this incurs extra copy conversions). """ raise NotImplementedError
[docs] def slice(self, start: int, end: int, copy: bool) -> Block: """Return a slice of this block. Args: start: The starting index of the slice. end: The ending index of the slice. copy: Whether to perform a data copy for the slice. Returns: The sliced block result. """ raise NotImplementedError
[docs] def take(self, indices: List[int]) -> Block: """Return a new block containing the provided row indices. Args: indices: The row indices to return. Returns: A new block containing the provided row indices. """ raise NotImplementedError
[docs] def select(self, columns: List[Optional[str]]) -> Block: """Return a new block containing the provided columns.""" raise NotImplementedError
[docs] def random_shuffle(self, random_seed: Optional[int]) -> Block: """Randomly shuffle this block.""" raise NotImplementedError
[docs] def to_pandas(self) -> "pandas.DataFrame": """Convert this block into a Pandas dataframe.""" raise NotImplementedError
[docs] def to_numpy( self, columns: Optional[Union[str, List[str]]] = None ) -> Union[np.ndarray, Dict[str, np.ndarray]]: """Convert this block (or columns of block) into a NumPy ndarray. Args: columns: Name of columns to convert, or None if converting all columns. """ raise NotImplementedError
[docs] def to_arrow(self) -> "pyarrow.Table": """Convert this block into an Arrow table.""" raise NotImplementedError
[docs] def to_block(self) -> Block: """Return the base block that this accessor wraps.""" raise NotImplementedError
[docs] def to_default(self) -> Block: """Return the default data format for this accessor.""" return self.to_block()
[docs] def to_batch_format(self, batch_format: Optional[str]) -> DataBatch: """Convert this block into the provided batch format. Args: batch_format: The batch format to convert this block to. Returns: This block formatted as the provided batch format. """ if batch_format is None: return self.to_block() elif batch_format == "default" or batch_format == "native": return self.to_default() elif batch_format == "pandas": return self.to_pandas() elif batch_format == "pyarrow": return self.to_arrow() elif batch_format == "numpy": return self.to_numpy() else: raise ValueError( f"The batch format must be one of {VALID_BATCH_FORMATS}, got: " f"{batch_format}" )
[docs] def size_bytes(self) -> int: """Return the approximate size in bytes of this block.""" raise NotImplementedError
[docs] def schema(self) -> Union[type, "pyarrow.lib.Schema"]: """Return the Python type or pyarrow schema of this block.""" raise NotImplementedError
[docs] def get_metadata( self, input_files: List[str], exec_stats: Optional[BlockExecStats] ) -> BlockMetadata: """Create a metadata object from this block.""" return BlockMetadata( num_rows=self.num_rows(), size_bytes=self.size_bytes(), schema=self.schema(), input_files=input_files, exec_stats=exec_stats, )
[docs] def zip(self, other: "Block") -> "Block": """Zip this block with another block of the same type and size.""" raise NotImplementedError
[docs] @staticmethod def builder() -> "BlockBuilder": """Create a builder for this block type.""" raise NotImplementedError
[docs] @staticmethod def batch_to_block(batch: DataBatch) -> Block: """Create a block from user-facing data formats.""" if isinstance(batch, np.ndarray): raise ValueError( f"Error validating {_truncated_repr(batch)}: " "Standalone numpy arrays are not " "allowed in Ray 2.5. Return a dict of field -> array, " "e.g., `{'data': array}` instead of `array`." ) elif isinstance(batch, import pyarrow as pa from import ArrowBlockAccessor try: return ArrowBlockAccessor.numpy_to_block(batch) except (pa.ArrowNotImplementedError, pa.ArrowInvalid, pa.ArrowTypeError): import pandas as pd # TODO(ekl) once we support Python objects within Arrow blocks, we # don't need this fallback path. return pd.DataFrame(dict(batch)) return batch
[docs] @staticmethod def for_block(block: Block) -> "BlockAccessor[T]": """Create a block accessor for the given block.""" _check_pyarrow_version() import pandas import pyarrow if isinstance(block, pyarrow.Table): from import ArrowBlockAccessor return ArrowBlockAccessor(block) elif isinstance(block, pandas.DataFrame): from import PandasBlockAccessor return PandasBlockAccessor(block) elif isinstance(block, bytes): from import ArrowBlockAccessor return ArrowBlockAccessor.from_bytes(block) elif isinstance(block, list): raise ValueError( f"Error validating {_truncated_repr(block)}: " "Standalone Python objects are not " "allowed in Ray 2.5. To use Python objects in a dataset, " "wrap them in a dict of numpy arrays, e.g., " "return `{'item': batch}` instead of just `batch`." ) else: raise TypeError("Not a block type: {} ({})".format(block, type(block)))
[docs] def sample(self, n_samples: int, sort_key: "SortKey") -> "Block": """Return a random sample of items from this block.""" raise NotImplementedError
[docs] def sort_and_partition( self, boundaries: List[T], sort_key: "SortKey" ) -> List["Block"]: """Return a list of sorted partitions of this block.""" raise NotImplementedError
[docs] def combine(self, key: Optional[str], agg: "AggregateFn") -> Block: """Combine rows with the same key into an accumulator.""" raise NotImplementedError
[docs] @staticmethod def merge_sorted_blocks( blocks: List["Block"], sort_key: "SortKey" ) -> Tuple[Block, BlockMetadata]: """Return a sorted block by merging a list of sorted blocks.""" raise NotImplementedError
[docs] @staticmethod def aggregate_combined_blocks( blocks: List[Block], key: Optional[str], agg: "AggregateFn" ) -> Tuple[Block, BlockMetadata]: """Aggregate partially combined and sorted blocks.""" raise NotImplementedError