Source code for ray.rllib.algorithms.bc.bc

from ray.rllib.algorithms.algorithm_config import AlgorithmConfig
from ray.rllib.algorithms.marwil.marwil import MARWIL, MARWILConfig
from ray.rllib.core.rl_module.rl_module import RLModuleSpec
from ray.rllib.utils.annotations import override
from ray.rllib.utils.typing import RLModuleSpecType


[docs] class BCConfig(MARWILConfig): """Defines a configuration class from which a new BC Algorithm can be built .. testcode:: :skipif: True from ray.rllib.algorithms.bc import BCConfig # Run this from the ray directory root. config = BCConfig().training(lr=0.00001, gamma=0.99) config = config.offline_data( input_="./rllib/tests/data/cartpole/large.json") # Build an Algorithm object from the config and run 1 training iteration. algo = config.build() algo.train() .. testcode:: :skipif: True from ray.rllib.algorithms.bc import BCConfig from ray import tune config = BCConfig() # Print out some default values. print(config.beta) # Update the config object. config.training( lr=tune.grid_search([0.001, 0.0001]), beta=0.75 ) # Set the config object's data path. # Run this from the ray directory root. config.offline_data( input_="./rllib/tests/data/cartpole/large.json" ) # Set the config object's env, used for evaluation. config.environment(env="CartPole-v1") # Use to_dict() to get the old-style python config dict # when running with tune. tune.Tuner( "BC", param_space=config.to_dict(), ).fit() """ def __init__(self, algo_class=None): super().__init__(algo_class=algo_class or BC) # fmt: off # __sphinx_doc_begin__ # No need to calculate advantages (or do anything else with the rewards). self.beta = 0.0 # Advantages (calculated during postprocessing) # not important for behavioral cloning. self.postprocess_inputs = False # Materialize only the mapped data. This is optimal as long # as no connector in the connector pipeline holds a state. self.materialize_data = False self.materialize_mapped_data = True # __sphinx_doc_end__ # fmt: on @override(AlgorithmConfig) def get_default_rl_module_spec(self) -> RLModuleSpecType: if self.framework_str == "torch": from ray.rllib.algorithms.bc.torch.default_bc_torch_rl_module import ( DefaultBCTorchRLModule, ) return RLModuleSpec(module_class=DefaultBCTorchRLModule) else: raise ValueError( f"The framework {self.framework_str} is not supported. " "Use `torch` instead." ) @override(AlgorithmConfig) def build_learner_connector( self, input_observation_space, input_action_space, device=None, ): pipeline = super().build_learner_connector( input_observation_space=input_observation_space, input_action_space=input_action_space, device=device, ) # Remove unneeded connectors from the MARWIL connector pipeline. pipeline.remove("AddOneTsToEpisodesAndTruncate") pipeline.remove("GeneralAdvantageEstimation") return pipeline @override(MARWILConfig) def validate(self) -> None: # Call super's validation method. super().validate() if self.beta != 0.0: raise ValueError("For behavioral cloning, `beta` parameter must be 0.0!")
class BC(MARWIL): """Behavioral Cloning (derived from MARWIL). Uses MARWIL with beta force-set to 0.0. """ @classmethod @override(MARWIL) def get_default_config(cls) -> AlgorithmConfig: return BCConfig()