Source code for ray.rllib.policy.sample_batch

import collections
import numpy as np
import sys
import itertools
from typing import Any, Dict, Iterable, List, Optional, Set, Union

from ray.rllib.utils.annotations import PublicAPI, DeveloperAPI
from ray.rllib.utils.compression import pack, unpack, is_compressed
from ray.rllib.utils.memory import concat_aligned
from ray.rllib.utils.typing import TensorType

# Default policy id for single agent environments
DEFAULT_POLICY_ID = "default_policy"

# TODO(ekl) reuse the other id def once we fix imports
PolicyID = Any

[docs]@PublicAPI class SampleBatch: """Wrapper around a dictionary with string keys and array-like values. For example, {"obs": [1, 2, 3], "reward": [0, -1, 1]} is a batch of three samples, each with an "obs" and "reward" attribute. """ # Outputs from interacting with the environment OBS = "obs" CUR_OBS = "obs" NEXT_OBS = "new_obs" ACTIONS = "actions" REWARDS = "rewards" PREV_ACTIONS = "prev_actions" PREV_REWARDS = "prev_rewards" DONES = "dones" INFOS = "infos" # Extra action fetches keys. ACTION_DIST_INPUTS = "action_dist_inputs" ACTION_PROB = "action_prob" ACTION_LOGP = "action_logp" # Uniquely identifies an episode. EPS_ID = "eps_id" # Uniquely identifies a sample batch. This is important to distinguish RNN # sequences from the same episode when multiple sample batches are # concatenated (fusing sequences across batches can be unsafe). UNROLL_ID = "unroll_id" # Uniquely identifies an agent within an episode. AGENT_INDEX = "agent_index" # Value function predictions emitted by the behaviour policy. VF_PREDS = "vf_preds" @PublicAPI def __init__(self, *args, **kwargs): """Constructs a sample batch (same params as dict constructor).""" # Possible seq_lens (TxB or BxT) setup. self.time_major = kwargs.pop("_time_major", None) self.seq_lens = kwargs.pop("_seq_lens", None) self.max_seq_len = None if self.seq_lens is not None and len(self.seq_lens) > 0: self.max_seq_len = max(self.seq_lens) # The actual data, accessible by column name (str). = dict(*args, **kwargs) lengths = [] for k, v in assert isinstance(k, str), self lengths.append(len(v)) if isinstance(v, list):[k] = np.array(v) if not lengths: raise ValueError("Empty sample batch") assert len(set(lengths)) == 1, \ "Data columns must be same length, but lens are {}".format(lengths) if self.seq_lens is not None and len(self.seq_lens) > 0: self.count = sum(self.seq_lens) else: self.count = len([k]) # Keeps track of new columns added after initial ones. self.new_columns = []
[docs] @staticmethod @PublicAPI def concat_samples(samples: List["SampleBatch"]) -> \ Union["SampleBatch", "MultiAgentBatch"]: """Concatenates n data dicts or MultiAgentBatches. Args: samples (List[Dict[TensorType]]]): List of dicts of data (numpy). Returns: Union[SampleBatch, MultiAgentBatch]: A new (compressed) SampleBatch or MultiAgentBatch. """ if isinstance(samples[0], MultiAgentBatch): return MultiAgentBatch.concat_samples(samples) seq_lens = [] concat_samples = [] for s in samples: if s.count > 0: concat_samples.append(s) if s.seq_lens is not None: seq_lens.extend(s.seq_lens) out = {} for k in concat_samples[0].keys(): out[k] = concat_aligned( [s[k] for s in concat_samples], time_major=concat_samples[0].time_major) return SampleBatch( out, _seq_lens=seq_lens, _time_major=concat_samples[0].time_major)
[docs] @PublicAPI def concat(self, other: "SampleBatch") -> "SampleBatch": """Returns a new SampleBatch with each data column concatenated. Args: other (SampleBatch): The other SampleBatch object to concat to this one. Returns: SampleBatch: The new SampleBatch, resulting from concating `other` to `self`. Examples: >>> b1 = SampleBatch({"a": [1, 2]}) >>> b2 = SampleBatch({"a": [3, 4, 5]}) >>> print(b1.concat(b2)) {"a": [1, 2, 3, 4, 5]} """ if self.keys() != other.keys(): raise ValueError( "SampleBatches to concat must have same columns! {} vs {}". format(list(self.keys()), list(other.keys()))) out = {} for k in self.keys(): out[k] = concat_aligned([self[k], other[k]]) return SampleBatch(out)
[docs] @PublicAPI def copy(self) -> "SampleBatch": """Creates a (deep) copy of this SampleBatch and returns it. Returns: SampleBatch: A (deep) copy of this SampleBatch object. """ return SampleBatch( {k: np.array(v, copy=True) for (k, v) in})
[docs] @PublicAPI def rows(self) -> Dict[str, TensorType]: """Returns an iterator over data rows, i.e. dicts with column values. Yields: Dict[str, TensorType]: The column values of the row in this iteration. Examples: >>> batch = SampleBatch({"a": [1, 2, 3], "b": [4, 5, 6]}) >>> for row in batch.rows(): print(row) {"a": 1, "b": 4} {"a": 2, "b": 5} {"a": 3, "b": 6} """ for i in range(self.count): row = {} for k in self.keys(): row[k] = self[k][i] yield row
[docs] @PublicAPI def columns(self, keys: List[str]) -> List[any]: """Returns a list of the batch-data in the specified columns. Args: keys (List[str]): List of column names fo which to return the data. Returns: List[any]: The list of data items ordered by the order of column names in `keys`. Examples: >>> batch = SampleBatch({"a": [1], "b": [2], "c": [3]}) >>> print(batch.columns(["a", "b"])) [[1], [2]] """ out = [] for k in keys: out.append(self[k]) return out
[docs] @PublicAPI def shuffle(self) -> None: """Shuffles the rows of this batch in-place.""" permutation = np.random.permutation(self.count) for key, val in self.items(): self[key] = val[permutation]
[docs] @PublicAPI def split_by_episode(self) -> List["SampleBatch"]: """Splits this batch's data by `eps_id`. Returns: List[SampleBatch]: List of batches, one per distinct episode. """ slices = [] cur_eps_id =["eps_id"][0] offset = 0 for i in range(self.count): next_eps_id =["eps_id"][i] if next_eps_id != cur_eps_id: slices.append(self.slice(offset, i)) offset = i cur_eps_id = next_eps_id slices.append(self.slice(offset, self.count)) for s in slices: slen = len(set(s["eps_id"])) assert slen == 1, (s, slen) assert sum(s.count for s in slices) == self.count, (slices, self.count) return slices
[docs] @PublicAPI def slice(self, start: int, end: int) -> "SampleBatch": """Returns a slice of the row data of this batch (w/o copying). Args: start (int): Starting index. end (int): Ending index. Returns: SampleBatch: A new SampleBatch, which has a slice of this batch's data. """ if self.time_major is not None: return SampleBatch( {k: v[:, start:end] for k, v in}, _seq_lens=self.seq_lens[start:end], _time_major=self.time_major) else: return SampleBatch( {k: v[start:end] for k, v in}, _seq_lens=None, _time_major=self.time_major)
[docs] @PublicAPI def timeslices(self, k: int) -> List["SampleBatch"]: """Returns SampleBatches, each one representing a k-slice of this one. Will start from timestep 0 and produce slices of size=k. Args: k (int): The size (in timesteps) of each returned SampleBatch. Returns: List[SampleBatch]: The list of (new) SampleBatches (each one of size k). """ out = [] i = 0 while i < self.count: out.append(self.slice(i, i + k)) i += k return out
[docs] @PublicAPI def keys(self) -> Iterable[str]: """ Returns: Iterable[str]: The keys() iterable over ``. """ return
[docs] @PublicAPI def items(self) -> Iterable[TensorType]: """ Returns: Iterable[TensorType]: The values() iterable over ``. """ return
[docs] @PublicAPI def get(self, key: str) -> Optional[TensorType]: """Returns one column (by key) from the data or None if key not found. Args: key (str): The key (column name) to return. Returns: Optional[TensorType]: The data under the given key. None if key not found in data. """ return
[docs] @PublicAPI def size_bytes(self) -> int: """ Returns: int: The overall size in bytes of the data buffer (all columns). """ return sum(sys.getsizeof(d) for d in
@PublicAPI def __getitem__(self, key: str) -> TensorType: """Returns one column (by key) from the data. Args: key (str): The key (column name) to return. Returns: TensorType: The data under the given key. """ return[key] @PublicAPI def __setitem__(self, key, item) -> None: """Inserts (overrides) an entire column (by key) in the data buffer. Args: key (str): The column name to set a value for. item (TensorType): The data to insert. """ if key not in self.new_columns.append(key)[key] = item
[docs] @DeveloperAPI def compress(self, bulk: bool = False, columns: Set[str] = frozenset(["obs", "new_obs"])) -> None: """Compresses the data buffers (by column) in place. Args: bulk (bool): Whether to compress across the batch dimension (0) as well. If False will compress n separate list items, where n is the batch size. columns (Set[str]): The columns to compress. Default: Only compress the obs and new_obs columns. """ for key in columns: if key in if bulk:[key] = pack([key]) else:[key] = np.array( [pack(o) for o in[key]])
[docs] @DeveloperAPI def decompress_if_needed(self, columns: Set[str] = frozenset( ["obs", "new_obs"])) -> "SampleBatch": """Decompresses data buffers (per column if not compressed) in place. Args: columns (Set[str]): The columns to decompress. Default: Only decompress the obs and new_obs columns. Returns: SampleBatch: This very SampleBatch. """ for key in columns: if key in arr =[key] if is_compressed(arr):[key] = unpack(arr) elif len(arr) > 0 and is_compressed(arr[0]):[key] = np.array( [unpack(o) for o in[key]]) return self
def __str__(self): return "SampleBatch({})".format(str( def __repr__(self): return "SampleBatch({})".format(str( def __iter__(self): return def __contains__(self, x): return x in
[docs]@PublicAPI class MultiAgentBatch: """A batch of experiences from multiple agents in the environment. Attributes: policy_batches (Dict[PolicyID, SampleBatch]): Mapping from policy ids to SampleBatches of experiences. count (int): The number of env steps in this batch. """ @PublicAPI def __init__(self, policy_batches: Dict[PolicyID, SampleBatch], env_steps: int): """Initialize a MultiAgentBatch object. Args: policy_batches (Dict[PolicyID, SampleBatch]): Mapping from policy ids to SampleBatches of experiences. env_steps (int): The number of timesteps in the environment this batch contains. This will be less than the number of transitions this batch contains across all policies in total. """ for v in policy_batches.values(): assert isinstance(v, SampleBatch) self.policy_batches = policy_batches # Called count for uniformity with SampleBatch. Prefer to access this # via the env_steps() method when possible for clarity. self.count = env_steps
[docs] @PublicAPI def env_steps(self) -> int: """The number of env steps (there are >= 1 agent steps per env step). Returns: int: The number of environment steps contained in this batch. """ return self.count
[docs] @PublicAPI def agent_steps(self) -> int: """The number of agent steps (there are >= 1 agent steps per env step). Returns: int: The number of agent steps total in this batch. """ ct = 0 for batch in self.policy_batches.values(): ct += batch.count return ct
[docs] @PublicAPI def timeslices(self, k: int) -> List["MultiAgentBatch"]: """Returns k-step batches holding data for each agent at those steps. For examples, suppose we have agent1 observations [a1t1, a1t2, a1t3], for agent2, [a2t1, a2t3], and for agent3, [a3t3] only. Calling timeslices(1) would return three MultiAgentBatches containing [a1t1, a2t1], [a1t2], and [a1t3, a2t3, a3t3]. Calling timeslices(2) would return two MultiAgentBatches containing [a1t1, a1t2, a2t1], and [a1t3, a2t3, a3t3]. This method is used to implement "lockstep" replay mode. Note that this method does not guarantee each batch contains only data from a single unroll. Batches might contain data from multiple different envs. """ from ray.rllib.evaluation.sample_batch_builder import \ SampleBatchBuilder # Build a sorted set of (eps_id, t, policy_id, data...) steps = [] for policy_id, batch in self.policy_batches.items(): for row in batch.rows(): steps.append((row[SampleBatch.EPS_ID], row["t"], row["agent_index"], policy_id, row)) steps.sort() finished_slices = [] cur_slice = collections.defaultdict(SampleBatchBuilder) cur_slice_size = 0 def finish_slice(): nonlocal cur_slice_size assert cur_slice_size > 0 batch = MultiAgentBatch( {k: v.build_and_reset() for k, v in cur_slice.items()}, cur_slice_size) cur_slice_size = 0 finished_slices.append(batch) # For each unique env timestep. for _, group in itertools.groupby(steps, lambda x: x[:2]): # Accumulate into the current slice. for _, _, _, policy_id, row in group: cur_slice[policy_id].add_values(**row) cur_slice_size += 1 # Slice has reached target number of env steps. if cur_slice_size >= k: finish_slice() assert cur_slice_size == 0 if cur_slice_size > 0: finish_slice() assert len(finished_slices) > 0, finished_slices return finished_slices
[docs] @staticmethod @PublicAPI def wrap_as_needed( policy_batches: Dict[PolicyID, SampleBatch], env_steps: int) -> Union[SampleBatch, "MultiAgentBatch"]: """Returns SampleBatch or MultiAgentBatch, depending on given policies. Args: policy_batches (Dict[PolicyID, SampleBatch]): Mapping from policy ids to SampleBatch. env_steps (int): Number of env steps in the batch. Returns: Union[SampleBatch, MultiAgentBatch]: The single default policy's SampleBatch or a MultiAgentBatch (more than one policy). """ if len(policy_batches) == 1 and DEFAULT_POLICY_ID in policy_batches: return policy_batches[DEFAULT_POLICY_ID] return MultiAgentBatch(policy_batches, env_steps)
[docs] @staticmethod @PublicAPI def concat_samples(samples: List["MultiAgentBatch"]) -> "MultiAgentBatch": """Concatenates a list of MultiAgentBatches into a new MultiAgentBatch. Args: samples (List[MultiAgentBatch]): List of MultiagentBatch objects to concatenate. Returns: MultiAgentBatch: A new MultiAgentBatch consisting of the concatenated inputs. """ policy_batches = collections.defaultdict(list) env_steps = 0 for s in samples: if not isinstance(s, MultiAgentBatch): raise ValueError( "`MultiAgentBatch.concat_samples()` can only concat " "MultiAgentBatch types, not {}!".format(type(s).__name__)) for key, batch in s.policy_batches.items(): policy_batches[key].append(batch) env_steps += s.env_steps() out = {} for key, batches in policy_batches.items(): out[key] = SampleBatch.concat_samples(batches) return MultiAgentBatch(out, env_steps)
[docs] @PublicAPI def copy(self) -> "MultiAgentBatch": """Deep-copies self into a new MultiAgentBatch. Returns: MultiAgentBatch: The copy of self with deep-copied data. """ return MultiAgentBatch( {k: v.copy() for (k, v) in self.policy_batches.items()}, self.count)
[docs] @PublicAPI def size_bytes(self) -> int: """ Returns: int: The overall size in bytes of all policy batches (all columns). """ return sum(b.size_bytes() for b in self.policy_batches.values())
[docs] @DeveloperAPI def compress(self, bulk: bool = False, columns: Set[str] = frozenset(["obs", "new_obs"])) -> None: """Compresses each policy batch (per column) in place. Args: bulk (bool): Whether to compress across the batch dimension (0) as well. If False will compress n separate list items, where n is the batch size. columns (Set[str]): Set of column names to compress. """ for batch in self.policy_batches.values(): batch.compress(bulk=bulk, columns=columns)
[docs] @DeveloperAPI def decompress_if_needed(self, columns: Set[str] = frozenset( ["obs", "new_obs"])) -> "MultiAgentBatch": """Decompresses each policy batch (per column), if already compressed. Args: columns (Set[str]): Set of column names to decompress. Returns: MultiAgentBatch: This very MultiAgentBatch. """ for batch in self.policy_batches.values(): batch.decompress_if_needed(columns) return self
def __str__(self): return "MultiAgentBatch({}, env_steps={})".format( str(self.policy_batches), self.count) def __repr__(self): return "MultiAgentBatch({}, env_steps={})".format( str(self.policy_batches), self.count)