ray.rllib.evaluation.rollout_worker.RolloutWorker.sample#
- RolloutWorker.sample(**kwargs) SampleBatch | MultiAgentBatch | Dict[str, Any] [source]#
Returns a batch of experience sampled from this worker.
This method must be implemented by subclasses.
- Returns:
A columnar batch of experiences (e.g., tensors) or a MultiAgentBatch.
import gymnasium as gym from ray.rllib.evaluation.rollout_worker import RolloutWorker from ray.rllib.algorithms.ppo.ppo_tf_policy import PPOTF1Policy worker = RolloutWorker( env_creator=lambda _: gym.make("CartPole-v1"), default_policy_class=PPOTF1Policy, config=AlgorithmConfig(), ) print(worker.sample())
SampleBatch({"obs": [...], "action": [...], ...})