Source code for ray.rllib.policy.torch_policy_v2

import copy
import functools
import logging
import math
import os
import threading
import time
from typing import Any, Dict, List, Optional, Set, Tuple, Type, Union

import gymnasium as gym
import numpy as np
from packaging import version
import tree  # pip install dm_tree

import ray
from ray.rllib.models.catalog import ModelCatalog
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.torch.torch_action_dist import TorchDistributionWrapper
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.rnn_sequencing import pad_batch_to_sequences_of_same_size
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.torch_policy import _directStepOptimizerSingleton
from ray.rllib.utils import NullContextManager, force_list
from ray.rllib.utils.annotations import (
    OldAPIStack,
    OverrideToImplementCustomLogic,
    OverrideToImplementCustomLogic_CallToSuperRecommended,
    is_overridden,
    override,
)
from ray.rllib.utils.error import ERR_MSG_TORCH_POLICY_CANNOT_SAVE_MODEL
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.metrics import (
    DIFF_NUM_GRAD_UPDATES_VS_SAMPLER_POLICY,
    NUM_AGENT_STEPS_TRAINED,
    NUM_GRAD_UPDATES_LIFETIME,
)
from ray.rllib.utils.metrics.learner_info import LEARNER_STATS_KEY
from ray.rllib.utils.numpy import convert_to_numpy
from ray.rllib.utils.spaces.space_utils import normalize_action
from ray.rllib.utils.threading import with_lock
from ray.rllib.utils.torch_utils import (
    convert_to_torch_tensor,
    TORCH_COMPILE_REQUIRED_VERSION,
)
from ray.rllib.utils.typing import (
    AlgorithmConfigDict,
    GradInfoDict,
    ModelGradients,
    ModelWeights,
    PolicyState,
    TensorStructType,
    TensorType,
)

torch, nn = try_import_torch()

logger = logging.getLogger(__name__)


[docs] @OldAPIStack class TorchPolicyV2(Policy): """PyTorch specific Policy class to use with RLlib."""
[docs] def __init__( self, observation_space: gym.spaces.Space, action_space: gym.spaces.Space, config: AlgorithmConfigDict, *, max_seq_len: int = 20, ): """Initializes a TorchPolicy instance. Args: observation_space: Observation space of the policy. action_space: Action space of the policy. config: The Policy's config dict. max_seq_len: Max sequence length for LSTM training. """ self.framework = config["framework"] = "torch" self._loss_initialized = False super().__init__(observation_space, action_space, config) # Create model. model, dist_class = self._init_model_and_dist_class() # Create multi-GPU model towers, if necessary. # - The central main model will be stored under self.model, residing # on self.device (normally, a CPU). # - Each GPU will have a copy of that model under # self.model_gpu_towers, matching the devices in self.devices. # - Parallelization is done by splitting the train batch and passing # it through the model copies in parallel, then averaging over the # resulting gradients, applying these averages on the main model and # updating all towers' weights from the main model. # - In case of just one device (1 (fake or real) GPU or 1 CPU), no # parallelization will be done. # Get devices to build the graph on. num_gpus = self._get_num_gpus_for_policy() gpu_ids = list(range(torch.cuda.device_count())) logger.info(f"Found {len(gpu_ids)} visible cuda devices.") # Place on one or more CPU(s) when either: # - Fake GPU mode. # - num_gpus=0 (either set by user or we are in local_mode=True). # - No GPUs available. if config["_fake_gpus"] or num_gpus == 0 or not gpu_ids: self.device = torch.device("cpu") self.devices = [self.device for _ in range(int(math.ceil(num_gpus)) or 1)] self.model_gpu_towers = [ model if i == 0 else copy.deepcopy(model) for i in range(int(math.ceil(num_gpus)) or 1) ] if hasattr(self, "target_model"): self.target_models = { m: self.target_model for m in self.model_gpu_towers } self.model = model # Place on one or more actual GPU(s), when: # - num_gpus > 0 (set by user) AND # - local_mode=False AND # - actual GPUs available AND # - non-fake GPU mode. else: # We are a remote worker (WORKER_MODE=1): # GPUs should be assigned to us by ray. if ray._private.worker._mode() == ray._private.worker.WORKER_MODE: gpu_ids = ray.get_gpu_ids() if len(gpu_ids) < num_gpus: raise ValueError( "TorchPolicy was not able to find enough GPU IDs! Found " f"{gpu_ids}, but num_gpus={num_gpus}." ) self.devices = [ torch.device("cuda:{}".format(i)) for i, id_ in enumerate(gpu_ids) if i < num_gpus ] self.device = self.devices[0] ids = [id_ for i, id_ in enumerate(gpu_ids) if i < num_gpus] self.model_gpu_towers = [] for i, _ in enumerate(ids): model_copy = copy.deepcopy(model) self.model_gpu_towers.append(model_copy.to(self.devices[i])) if hasattr(self, "target_model"): self.target_models = { m: copy.deepcopy(self.target_model).to(self.devices[i]) for i, m in enumerate(self.model_gpu_towers) } self.model = self.model_gpu_towers[0] self.dist_class = dist_class self.unwrapped_model = model # used to support DistributedDataParallel # Lock used for locking some methods on the object-level. # This prevents possible race conditions when calling the model # first, then its value function (e.g. in a loss function), in # between of which another model call is made (e.g. to compute an # action). self._lock = threading.RLock() self._state_inputs = self.model.get_initial_state() self._is_recurrent = len(tree.flatten(self._state_inputs)) > 0 # Auto-update model's inference view requirements, if recurrent. self._update_model_view_requirements_from_init_state() # Combine view_requirements for Model and Policy. self.view_requirements.update(self.model.view_requirements) self.exploration = self._create_exploration() self._optimizers = force_list(self.optimizer()) # Backward compatibility workaround so Policy will call self.loss() # directly. # TODO (jungong): clean up after all policies are migrated to new sub-class # implementation. self._loss = None # Store, which params (by index within the model's list of # parameters) should be updated per optimizer. # Maps optimizer idx to set or param indices. self.multi_gpu_param_groups: List[Set[int]] = [] main_params = {p: i for i, p in enumerate(self.model.parameters())} for o in self._optimizers: param_indices = [] for pg_idx, pg in enumerate(o.param_groups): for p in pg["params"]: param_indices.append(main_params[p]) self.multi_gpu_param_groups.append(set(param_indices)) # Create n sample-batch buffers (num_multi_gpu_tower_stacks), each # one with m towers (num_gpus). num_buffers = self.config.get("num_multi_gpu_tower_stacks", 1) self._loaded_batches = [[] for _ in range(num_buffers)] # If set, means we are using distributed allreduce during learning. self.distributed_world_size = None self.batch_divisibility_req = self.get_batch_divisibility_req() self.max_seq_len = max_seq_len # If model is an RLModule it won't have tower_stats instead there will be a # self.tower_state[model] -> dict for each tower. self.tower_stats = {} if not hasattr(self.model, "tower_stats"): for model in self.model_gpu_towers: self.tower_stats[model] = {}
def loss_initialized(self): return self._loss_initialized
[docs] @OverrideToImplementCustomLogic @override(Policy) def loss( self, model: ModelV2, dist_class: Type[TorchDistributionWrapper], train_batch: SampleBatch, ) -> Union[TensorType, List[TensorType]]: """Constructs the loss function. Args: model: The Model to calculate the loss for. dist_class: The action distr. class. train_batch: The training data. Returns: Loss tensor given the input batch. """ raise NotImplementedError
[docs] @OverrideToImplementCustomLogic def action_sampler_fn( self, model: ModelV2, *, obs_batch: TensorType, state_batches: TensorType, **kwargs, ) -> Tuple[TensorType, TensorType, TensorType, List[TensorType]]: """Custom function for sampling new actions given policy. Args: model: Underlying model. obs_batch: Observation tensor batch. state_batches: Action sampling state batch. Returns: Sampled action Log-likelihood Action distribution inputs Updated state """ return None, None, None, None
[docs] @OverrideToImplementCustomLogic def action_distribution_fn( self, model: ModelV2, *, obs_batch: TensorType, state_batches: TensorType, **kwargs, ) -> Tuple[TensorType, type, List[TensorType]]: """Action distribution function for this Policy. Args: model: Underlying model. obs_batch: Observation tensor batch. state_batches: Action sampling state batch. Returns: Distribution input. ActionDistribution class. State outs. """ return None, None, None
[docs] @OverrideToImplementCustomLogic def make_model(self) -> ModelV2: """Create model. Note: only one of make_model or make_model_and_action_dist can be overridden. Returns: ModelV2 model. """ return None
[docs] @OverrideToImplementCustomLogic def make_model_and_action_dist( self, ) -> Tuple[ModelV2, Type[TorchDistributionWrapper]]: """Create model and action distribution function. Returns: ModelV2 model. ActionDistribution class. """ return None, None
[docs] @OverrideToImplementCustomLogic def get_batch_divisibility_req(self) -> int: """Get batch divisibility request. Returns: Size N. A sample batch must be of size K*N. """ # By default, any sized batch is ok, so simply return 1. return 1
[docs] @OverrideToImplementCustomLogic def stats_fn(self, train_batch: SampleBatch) -> Dict[str, TensorType]: """Stats function. Returns a dict of statistics. Args: train_batch: The SampleBatch (already) used for training. Returns: The stats dict. """ return {}
[docs] @OverrideToImplementCustomLogic_CallToSuperRecommended def extra_grad_process( self, optimizer: "torch.optim.Optimizer", loss: TensorType ) -> Dict[str, TensorType]: """Called after each optimizer.zero_grad() + loss.backward() call. Called for each self._optimizers/loss-value pair. Allows for gradient processing before optimizer.step() is called. E.g. for gradient clipping. Args: optimizer: A torch optimizer object. loss: The loss tensor associated with the optimizer. Returns: An dict with information on the gradient processing step. """ return {}
[docs] @OverrideToImplementCustomLogic_CallToSuperRecommended def extra_compute_grad_fetches(self) -> Dict[str, Any]: """Extra values to fetch and return from compute_gradients(). Returns: Extra fetch dict to be added to the fetch dict of the `compute_gradients` call. """ return {LEARNER_STATS_KEY: {}} # e.g, stats, td error, etc.
[docs] @OverrideToImplementCustomLogic_CallToSuperRecommended def extra_action_out( self, input_dict: Dict[str, TensorType], state_batches: List[TensorType], model: TorchModelV2, action_dist: TorchDistributionWrapper, ) -> Dict[str, TensorType]: """Returns dict of extra info to include in experience batch. Args: input_dict: Dict of model input tensors. state_batches: List of state tensors. model: Reference to the model object. action_dist: Torch action dist object to get log-probs (e.g. for already sampled actions). Returns: Extra outputs to return in a `compute_actions_from_input_dict()` call (3rd return value). """ return {}
[docs] @override(Policy) @OverrideToImplementCustomLogic_CallToSuperRecommended def postprocess_trajectory( self, sample_batch: SampleBatch, other_agent_batches: Optional[Dict[Any, SampleBatch]] = None, episode=None, ) -> SampleBatch: """Postprocesses a trajectory and returns the processed trajectory. The trajectory contains only data from one episode and from one agent. - If `config.batch_mode=truncate_episodes` (default), sample_batch may contain a truncated (at-the-end) episode, in case the `config.rollout_fragment_length` was reached by the sampler. - If `config.batch_mode=complete_episodes`, sample_batch will contain exactly one episode (no matter how long). New columns can be added to sample_batch and existing ones may be altered. Args: sample_batch: The SampleBatch to postprocess. other_agent_batches (Optional[Dict[PolicyID, SampleBatch]]): Optional dict of AgentIDs mapping to other agents' trajectory data (from the same episode). NOTE: The other agents use the same policy. episode (Optional[Episode]): Optional multi-agent episode object in which the agents operated. Returns: SampleBatch: The postprocessed, modified SampleBatch (or a new one). """ return sample_batch
[docs] @OverrideToImplementCustomLogic def optimizer( self, ) -> Union[List["torch.optim.Optimizer"], "torch.optim.Optimizer"]: """Custom the local PyTorch optimizer(s) to use. Returns: The local PyTorch optimizer(s) to use for this Policy. """ if hasattr(self, "config"): optimizers = [ torch.optim.Adam(self.model.parameters(), lr=self.config["lr"]) ] else: optimizers = [torch.optim.Adam(self.model.parameters())] if self.exploration: optimizers = self.exploration.get_exploration_optimizer(optimizers) return optimizers
def _init_model_and_dist_class(self): if is_overridden(self.make_model) and is_overridden( self.make_model_and_action_dist ): raise ValueError( "Only one of make_model or make_model_and_action_dist " "can be overridden." ) if is_overridden(self.make_model): model = self.make_model() dist_class, _ = ModelCatalog.get_action_dist( self.action_space, self.config["model"], framework=self.framework ) elif is_overridden(self.make_model_and_action_dist): model, dist_class = self.make_model_and_action_dist() else: dist_class, logit_dim = ModelCatalog.get_action_dist( self.action_space, self.config["model"], framework=self.framework ) model = ModelCatalog.get_model_v2( obs_space=self.observation_space, action_space=self.action_space, num_outputs=logit_dim, model_config=self.config["model"], framework=self.framework, ) # Compile the model, if requested by the user. if self.config.get("torch_compile_learner"): if ( torch is not None and version.parse(torch.__version__) < TORCH_COMPILE_REQUIRED_VERSION ): raise ValueError("`torch.compile` is not supported for torch < 2.0.0!") lw = "learner" if self.config.get("worker_index") else "worker" model = torch.compile( model, backend=self.config.get( f"torch_compile_{lw}_dynamo_backend", "inductor" ), dynamic=False, mode=self.config.get(f"torch_compile_{lw}_dynamo_mode"), ) return model, dist_class @override(Policy) def compute_actions_from_input_dict( self, input_dict: Dict[str, TensorType], explore: bool = None, timestep: Optional[int] = None, **kwargs, ) -> Tuple[TensorType, List[TensorType], Dict[str, TensorType]]: seq_lens = None with torch.no_grad(): # Pass lazy (torch) tensor dict to Model as `input_dict`. input_dict = self._lazy_tensor_dict(input_dict) input_dict.set_training(True) # Pack internal state inputs into (separate) list. state_batches = [ input_dict[k] for k in input_dict.keys() if "state_in" in k[:8] ] # Calculate RNN sequence lengths. if state_batches: seq_lens = torch.tensor( [1] * len(state_batches[0]), dtype=torch.long, device=state_batches[0].device, ) return self._compute_action_helper( input_dict, state_batches, seq_lens, explore, timestep ) @override(Policy) def compute_actions( self, obs_batch: Union[List[TensorStructType], TensorStructType], state_batches: Optional[List[TensorType]] = None, prev_action_batch: Union[List[TensorStructType], TensorStructType] = None, prev_reward_batch: Union[List[TensorStructType], TensorStructType] = None, info_batch: Optional[Dict[str, list]] = None, episodes=None, explore: Optional[bool] = None, timestep: Optional[int] = None, **kwargs, ) -> Tuple[TensorStructType, List[TensorType], Dict[str, TensorType]]: with torch.no_grad(): seq_lens = torch.ones(len(obs_batch), dtype=torch.int32) input_dict = self._lazy_tensor_dict( { SampleBatch.CUR_OBS: obs_batch, "is_training": False, } ) if prev_action_batch is not None: input_dict[SampleBatch.PREV_ACTIONS] = np.asarray(prev_action_batch) if prev_reward_batch is not None: input_dict[SampleBatch.PREV_REWARDS] = np.asarray(prev_reward_batch) state_batches = [ convert_to_torch_tensor(s, self.device) for s in (state_batches or []) ] return self._compute_action_helper( input_dict, state_batches, seq_lens, explore, timestep ) @with_lock @override(Policy) def compute_log_likelihoods( self, actions: Union[List[TensorStructType], TensorStructType], obs_batch: Union[List[TensorStructType], TensorStructType], state_batches: Optional[List[TensorType]] = None, prev_action_batch: Optional[ Union[List[TensorStructType], TensorStructType] ] = None, prev_reward_batch: Optional[ Union[List[TensorStructType], TensorStructType] ] = None, actions_normalized: bool = True, in_training: bool = True, ) -> TensorType: if is_overridden(self.action_sampler_fn) and not is_overridden( self.action_distribution_fn ): raise ValueError( "Cannot compute log-prob/likelihood w/o an " "`action_distribution_fn` and a provided " "`action_sampler_fn`!" ) with torch.no_grad(): input_dict = self._lazy_tensor_dict( {SampleBatch.CUR_OBS: obs_batch, SampleBatch.ACTIONS: actions} ) if prev_action_batch is not None: input_dict[SampleBatch.PREV_ACTIONS] = prev_action_batch if prev_reward_batch is not None: input_dict[SampleBatch.PREV_REWARDS] = prev_reward_batch seq_lens = torch.ones(len(obs_batch), dtype=torch.int32) state_batches = [ convert_to_torch_tensor(s, self.device) for s in (state_batches or []) ] if self.exploration: # Exploration hook before each forward pass. self.exploration.before_compute_actions(explore=False) # Action dist class and inputs are generated via custom function. if is_overridden(self.action_distribution_fn): dist_inputs, dist_class, state_out = self.action_distribution_fn( self.model, obs_batch=input_dict, state_batches=state_batches, seq_lens=seq_lens, explore=False, is_training=False, ) action_dist = dist_class(dist_inputs, self.model) # Default action-dist inputs calculation. else: dist_class = self.dist_class dist_inputs, _ = self.model(input_dict, state_batches, seq_lens) action_dist = dist_class(dist_inputs, self.model) # Normalize actions if necessary. actions = input_dict[SampleBatch.ACTIONS] if not actions_normalized and self.config["normalize_actions"]: actions = normalize_action(actions, self.action_space_struct) log_likelihoods = action_dist.logp(actions) return log_likelihoods @with_lock @override(Policy) def learn_on_batch(self, postprocessed_batch: SampleBatch) -> Dict[str, TensorType]: # Set Model to train mode. if self.model: self.model.train() # Callback handling. learn_stats = {} self.callbacks.on_learn_on_batch( policy=self, train_batch=postprocessed_batch, result=learn_stats ) # Compute gradients (will calculate all losses and `backward()` # them to get the grads). grads, fetches = self.compute_gradients(postprocessed_batch) # Step the optimizers. self.apply_gradients(_directStepOptimizerSingleton) self.num_grad_updates += 1 if self.model and hasattr(self.model, "metrics"): fetches["model"] = self.model.metrics() else: fetches["model"] = {} fetches.update( { "custom_metrics": learn_stats, NUM_AGENT_STEPS_TRAINED: postprocessed_batch.count, NUM_GRAD_UPDATES_LIFETIME: self.num_grad_updates, # -1, b/c we have to measure this diff before we do the update above. DIFF_NUM_GRAD_UPDATES_VS_SAMPLER_POLICY: ( self.num_grad_updates - 1 - (postprocessed_batch.num_grad_updates or 0) ), } ) return fetches @override(Policy) def load_batch_into_buffer( self, batch: SampleBatch, buffer_index: int = 0, ) -> int: # Set the is_training flag of the batch. batch.set_training(True) # Shortcut for 1 CPU only: Store batch in `self._loaded_batches`. if len(self.devices) == 1 and self.devices[0].type == "cpu": assert buffer_index == 0 pad_batch_to_sequences_of_same_size( batch=batch, max_seq_len=self.max_seq_len, shuffle=False, batch_divisibility_req=self.batch_divisibility_req, view_requirements=self.view_requirements, _enable_new_api_stack=False, padding="zero", ) self._lazy_tensor_dict(batch) self._loaded_batches[0] = [batch] return len(batch) # Batch (len=28, seq-lens=[4, 7, 4, 10, 3]): # 0123 0123456 0123 0123456789ABC # 1) split into n per-GPU sub batches (n=2). # [0123 0123456] [012] [3 0123456789 ABC] # (len=14, 14 seq-lens=[4, 7, 3] [1, 10, 3]) slices = batch.timeslices(num_slices=len(self.devices)) # 2) zero-padding (max-seq-len=10). # - [0123000000 0123456000 0120000000] # - [3000000000 0123456789 ABC0000000] for slice in slices: pad_batch_to_sequences_of_same_size( batch=slice, max_seq_len=self.max_seq_len, shuffle=False, batch_divisibility_req=self.batch_divisibility_req, view_requirements=self.view_requirements, _enable_new_api_stack=False, padding="zero", ) # 3) Load splits into the given buffer (consisting of n GPUs). slices = [slice.to_device(self.devices[i]) for i, slice in enumerate(slices)] self._loaded_batches[buffer_index] = slices # Return loaded samples per-device. return len(slices[0]) @override(Policy) def get_num_samples_loaded_into_buffer(self, buffer_index: int = 0) -> int: if len(self.devices) == 1 and self.devices[0] == "/cpu:0": assert buffer_index == 0 return sum(len(b) for b in self._loaded_batches[buffer_index]) @override(Policy) def learn_on_loaded_batch(self, offset: int = 0, buffer_index: int = 0): if not self._loaded_batches[buffer_index]: raise ValueError( "Must call Policy.load_batch_into_buffer() before " "Policy.learn_on_loaded_batch()!" ) # Get the correct slice of the already loaded batch to use, # based on offset and batch size. device_batch_size = self.config.get("minibatch_size") if device_batch_size is None: device_batch_size = self.config.get( "sgd_minibatch_size", self.config["train_batch_size"], ) device_batch_size //= len(self.devices) # Set Model to train mode. if self.model_gpu_towers: for t in self.model_gpu_towers: t.train() # Shortcut for 1 CPU only: Batch should already be stored in # `self._loaded_batches`. if len(self.devices) == 1 and self.devices[0].type == "cpu": assert buffer_index == 0 if device_batch_size >= len(self._loaded_batches[0][0]): batch = self._loaded_batches[0][0] else: batch = self._loaded_batches[0][0][offset : offset + device_batch_size] return self.learn_on_batch(batch) if len(self.devices) > 1: # Copy weights of main model (tower-0) to all other towers. state_dict = self.model.state_dict() # Just making sure tower-0 is really the same as self.model. assert self.model_gpu_towers[0] is self.model for tower in self.model_gpu_towers[1:]: tower.load_state_dict(state_dict) if device_batch_size >= sum(len(s) for s in self._loaded_batches[buffer_index]): device_batches = self._loaded_batches[buffer_index] else: device_batches = [ b[offset : offset + device_batch_size] for b in self._loaded_batches[buffer_index] ] # Callback handling. batch_fetches = {} for i, batch in enumerate(device_batches): custom_metrics = {} self.callbacks.on_learn_on_batch( policy=self, train_batch=batch, result=custom_metrics ) batch_fetches[f"tower_{i}"] = {"custom_metrics": custom_metrics} # Do the (maybe parallelized) gradient calculation step. tower_outputs = self._multi_gpu_parallel_grad_calc(device_batches) # Mean-reduce gradients over GPU-towers (do this on CPU: self.device). all_grads = [] for i in range(len(tower_outputs[0][0])): if tower_outputs[0][0][i] is not None: all_grads.append( torch.mean( torch.stack([t[0][i].to(self.device) for t in tower_outputs]), dim=0, ) ) else: all_grads.append(None) # Set main model's grads to mean-reduced values. for i, p in enumerate(self.model.parameters()): p.grad = all_grads[i] self.apply_gradients(_directStepOptimizerSingleton) self.num_grad_updates += 1 for i, (model, batch) in enumerate(zip(self.model_gpu_towers, device_batches)): batch_fetches[f"tower_{i}"].update( { LEARNER_STATS_KEY: self.stats_fn(batch), "model": model.metrics(), NUM_GRAD_UPDATES_LIFETIME: self.num_grad_updates, # -1, b/c we have to measure this diff before we do the update # above. DIFF_NUM_GRAD_UPDATES_VS_SAMPLER_POLICY: ( self.num_grad_updates - 1 - (batch.num_grad_updates or 0) ), } ) batch_fetches.update(self.extra_compute_grad_fetches()) return batch_fetches @with_lock @override(Policy) def compute_gradients(self, postprocessed_batch: SampleBatch) -> ModelGradients: assert len(self.devices) == 1 # If not done yet, see whether we have to zero-pad this batch. if not postprocessed_batch.zero_padded: pad_batch_to_sequences_of_same_size( batch=postprocessed_batch, max_seq_len=self.max_seq_len, shuffle=False, batch_divisibility_req=self.batch_divisibility_req, view_requirements=self.view_requirements, _enable_new_api_stack=False, padding="zero", ) postprocessed_batch.set_training(True) self._lazy_tensor_dict(postprocessed_batch, device=self.devices[0]) # Do the (maybe parallelized) gradient calculation step. tower_outputs = self._multi_gpu_parallel_grad_calc([postprocessed_batch]) all_grads, grad_info = tower_outputs[0] grad_info["allreduce_latency"] /= len(self._optimizers) grad_info.update(self.stats_fn(postprocessed_batch)) fetches = self.extra_compute_grad_fetches() return all_grads, dict(fetches, **{LEARNER_STATS_KEY: grad_info}) @override(Policy) def apply_gradients(self, gradients: ModelGradients) -> None: if gradients == _directStepOptimizerSingleton: for i, opt in enumerate(self._optimizers): opt.step() else: # TODO(sven): Not supported for multiple optimizers yet. assert len(self._optimizers) == 1 for g, p in zip(gradients, self.model.parameters()): if g is not None: if torch.is_tensor(g): p.grad = g.to(self.device) else: p.grad = torch.from_numpy(g).to(self.device) self._optimizers[0].step()
[docs] def get_tower_stats(self, stats_name: str) -> List[TensorStructType]: """Returns list of per-tower stats, copied to this Policy's device. Args: stats_name: The name of the stats to average over (this str must exist as a key inside each tower's `tower_stats` dict). Returns: The list of stats tensor (structs) of all towers, copied to this Policy's device. Raises: AssertionError: If the `stats_name` cannot be found in any one of the tower's `tower_stats` dicts. """ data = [] for model in self.model_gpu_towers: if self.tower_stats: tower_stats = self.tower_stats[model] else: tower_stats = model.tower_stats if stats_name in tower_stats: data.append( tree.map_structure( lambda s: s.to(self.device), tower_stats[stats_name] ) ) assert len(data) > 0, ( f"Stats `{stats_name}` not found in any of the towers (you have " f"{len(self.model_gpu_towers)} towers in total)! Make " "sure you call the loss function on at least one of the towers." ) return data
@override(Policy) def get_weights(self) -> ModelWeights: return {k: v.cpu().detach().numpy() for k, v in self.model.state_dict().items()} @override(Policy) def set_weights(self, weights: ModelWeights) -> None: weights = convert_to_torch_tensor(weights, device=self.device) self.model.load_state_dict(weights) @override(Policy) def is_recurrent(self) -> bool: return self._is_recurrent @override(Policy) def num_state_tensors(self) -> int: return len(self.model.get_initial_state()) @override(Policy) def get_initial_state(self) -> List[TensorType]: return [s.detach().cpu().numpy() for s in self.model.get_initial_state()] @override(Policy) @OverrideToImplementCustomLogic_CallToSuperRecommended def get_state(self) -> PolicyState: # Legacy Policy state (w/o torch.nn.Module and w/o PolicySpec). state = super().get_state() state["_optimizer_variables"] = [] for i, o in enumerate(self._optimizers): optim_state_dict = convert_to_numpy(o.state_dict()) state["_optimizer_variables"].append(optim_state_dict) # Add exploration state. if self.exploration: # This is not compatible with RLModules, which have a method # `forward_exploration` to specify custom exploration behavior. state["_exploration_state"] = self.exploration.get_state() return state @override(Policy) @OverrideToImplementCustomLogic_CallToSuperRecommended def set_state(self, state: PolicyState) -> None: # Set optimizer vars first. optimizer_vars = state.get("_optimizer_variables", None) if optimizer_vars: assert len(optimizer_vars) == len(self._optimizers) for o, s in zip(self._optimizers, optimizer_vars): # Torch optimizer param_groups include things like beta, etc. These # parameters should be left as scalar and not converted to tensors. # otherwise, torch.optim.step() will start to complain. optim_state_dict = {"param_groups": s["param_groups"]} optim_state_dict["state"] = convert_to_torch_tensor( s["state"], device=self.device ) o.load_state_dict(optim_state_dict) # Set exploration's state. if hasattr(self, "exploration") and "_exploration_state" in state: self.exploration.set_state(state=state["_exploration_state"]) # Restore global timestep. self.global_timestep = state["global_timestep"] # Then the Policy's (NN) weights and connectors. super().set_state(state)
[docs] @override(Policy) def export_model(self, export_dir: str, onnx: Optional[int] = None) -> None: """Exports the Policy's Model to local directory for serving. Creates a TorchScript model and saves it. Args: export_dir: Local writable directory or filename. onnx: If given, will export model in ONNX format. The value of this parameter set the ONNX OpSet version to use. """ os.makedirs(export_dir, exist_ok=True) if onnx: self._lazy_tensor_dict(self._dummy_batch) # Provide dummy state inputs if not an RNN (torch cannot jit with # returned empty internal states list). if "state_in_0" not in self._dummy_batch: self._dummy_batch["state_in_0"] = self._dummy_batch[ SampleBatch.SEQ_LENS ] = np.array([1.0]) seq_lens = self._dummy_batch[SampleBatch.SEQ_LENS] state_ins = [] i = 0 while "state_in_{}".format(i) in self._dummy_batch: state_ins.append(self._dummy_batch["state_in_{}".format(i)]) i += 1 dummy_inputs = { k: self._dummy_batch[k] for k in self._dummy_batch.keys() if k != "is_training" } file_name = os.path.join(export_dir, "model.onnx") torch.onnx.export( self.model, (dummy_inputs, state_ins, seq_lens), file_name, export_params=True, opset_version=onnx, do_constant_folding=True, input_names=list(dummy_inputs.keys()) + ["state_ins", SampleBatch.SEQ_LENS], output_names=["output", "state_outs"], dynamic_axes={ k: {0: "batch_size"} for k in list(dummy_inputs.keys()) + ["state_ins", SampleBatch.SEQ_LENS] }, ) # Save the torch.Model (architecture and weights, so it can be retrieved # w/o access to the original (custom) Model or Policy code). else: filename = os.path.join(export_dir, "model.pt") try: torch.save(self.model, f=filename) except Exception: if os.path.exists(filename): os.remove(filename) logger.warning(ERR_MSG_TORCH_POLICY_CANNOT_SAVE_MODEL)
[docs] @override(Policy) def import_model_from_h5(self, import_file: str) -> None: """Imports weights into torch model.""" return self.model.import_from_h5(import_file)
@with_lock def _compute_action_helper( self, input_dict, state_batches, seq_lens, explore, timestep ): """Shared forward pass logic (w/ and w/o trajectory view API). Returns: A tuple consisting of a) actions, b) state_out, c) extra_fetches. The input_dict is modified in-place to include a numpy copy of the computed actions under `SampleBatch.ACTIONS`. """ explore = explore if explore is not None else self.config["explore"] timestep = timestep if timestep is not None else self.global_timestep # Switch to eval mode. if self.model: self.model.eval() extra_fetches = dist_inputs = logp = None if is_overridden(self.action_sampler_fn): action_dist = None actions, logp, dist_inputs, state_out = self.action_sampler_fn( self.model, obs_batch=input_dict, state_batches=state_batches, explore=explore, timestep=timestep, ) else: # Call the exploration before_compute_actions hook. self.exploration.before_compute_actions(explore=explore, timestep=timestep) if is_overridden(self.action_distribution_fn): dist_inputs, dist_class, state_out = self.action_distribution_fn( self.model, obs_batch=input_dict, state_batches=state_batches, seq_lens=seq_lens, explore=explore, timestep=timestep, is_training=False, ) else: dist_class = self.dist_class dist_inputs, state_out = self.model(input_dict, state_batches, seq_lens) if not ( isinstance(dist_class, functools.partial) or issubclass(dist_class, TorchDistributionWrapper) ): raise ValueError( "`dist_class` ({}) not a TorchDistributionWrapper " "subclass! Make sure your `action_distribution_fn` or " "`make_model_and_action_dist` return a correct " "distribution class.".format(dist_class.__name__) ) action_dist = dist_class(dist_inputs, self.model) # Get the exploration action from the forward results. actions, logp = self.exploration.get_exploration_action( action_distribution=action_dist, timestep=timestep, explore=explore ) # Add default and custom fetches. if extra_fetches is None: extra_fetches = self.extra_action_out( input_dict, state_batches, self.model, action_dist ) # Action-dist inputs. if dist_inputs is not None: extra_fetches[SampleBatch.ACTION_DIST_INPUTS] = dist_inputs # Action-logp and action-prob. if logp is not None: extra_fetches[SampleBatch.ACTION_PROB] = torch.exp(logp.float()) extra_fetches[SampleBatch.ACTION_LOGP] = logp # Update our global timestep by the batch size. self.global_timestep += len(input_dict[SampleBatch.CUR_OBS]) return convert_to_numpy((actions, state_out, extra_fetches)) def _lazy_tensor_dict(self, postprocessed_batch: SampleBatch, device=None): if not isinstance(postprocessed_batch, SampleBatch): postprocessed_batch = SampleBatch(postprocessed_batch) postprocessed_batch.set_get_interceptor( functools.partial(convert_to_torch_tensor, device=device or self.device) ) return postprocessed_batch def _multi_gpu_parallel_grad_calc( self, sample_batches: List[SampleBatch] ) -> List[Tuple[List[TensorType], GradInfoDict]]: """Performs a parallelized loss and gradient calculation over the batch. Splits up the given train batch into n shards (n=number of this Policy's devices) and passes each data shard (in parallel) through the loss function using the individual devices' models (self.model_gpu_towers). Then returns each tower's outputs. Args: sample_batches: A list of SampleBatch shards to calculate loss and gradients for. Returns: A list (one item per device) of 2-tuples, each with 1) gradient list and 2) grad info dict. """ assert len(self.model_gpu_towers) == len(sample_batches) lock = threading.Lock() results = {} grad_enabled = torch.is_grad_enabled() def _worker(shard_idx, model, sample_batch, device): torch.set_grad_enabled(grad_enabled) try: with NullContextManager() if device.type == "cpu" else torch.cuda.device( # noqa: E501 device ): loss_out = force_list( self.loss(model, self.dist_class, sample_batch) ) # Call Model's custom-loss with Policy loss outputs and # train_batch. if hasattr(model, "custom_loss"): loss_out = model.custom_loss(loss_out, sample_batch) assert len(loss_out) == len(self._optimizers) # Loop through all optimizers. grad_info = {"allreduce_latency": 0.0} parameters = list(model.parameters()) all_grads = [None for _ in range(len(parameters))] for opt_idx, opt in enumerate(self._optimizers): # Erase gradients in all vars of the tower that this # optimizer would affect. param_indices = self.multi_gpu_param_groups[opt_idx] for param_idx, param in enumerate(parameters): if param_idx in param_indices and param.grad is not None: param.grad.data.zero_() # Recompute gradients of loss over all variables. loss_out[opt_idx].backward(retain_graph=True) grad_info.update( self.extra_grad_process(opt, loss_out[opt_idx]) ) grads = [] # Note that return values are just references; # Calling zero_grad would modify the values. for param_idx, param in enumerate(parameters): if param_idx in param_indices: if param.grad is not None: grads.append(param.grad) all_grads[param_idx] = param.grad if self.distributed_world_size: start = time.time() if torch.cuda.is_available(): # Sadly, allreduce_coalesced does not work with # CUDA yet. for g in grads: torch.distributed.all_reduce( g, op=torch.distributed.ReduceOp.SUM ) else: torch.distributed.all_reduce_coalesced( grads, op=torch.distributed.ReduceOp.SUM ) for param_group in opt.param_groups: for p in param_group["params"]: if p.grad is not None: p.grad /= self.distributed_world_size grad_info["allreduce_latency"] += time.time() - start with lock: results[shard_idx] = (all_grads, grad_info) except Exception as e: import traceback with lock: results[shard_idx] = ( ValueError( e.args[0] + "\n traceback" + traceback.format_exc() + "\n" + "In tower {} on device {}".format(shard_idx, device) ), e, ) # Single device (GPU) or fake-GPU case (serialize for better # debugging). if len(self.devices) == 1 or self.config["_fake_gpus"]: for shard_idx, (model, sample_batch, device) in enumerate( zip(self.model_gpu_towers, sample_batches, self.devices) ): _worker(shard_idx, model, sample_batch, device) # Raise errors right away for better debugging. last_result = results[len(results) - 1] if isinstance(last_result[0], ValueError): raise last_result[0] from last_result[1] # Multi device (GPU) case: Parallelize via threads. else: threads = [ threading.Thread( target=_worker, args=(shard_idx, model, sample_batch, device) ) for shard_idx, (model, sample_batch, device) in enumerate( zip(self.model_gpu_towers, sample_batches, self.devices) ) ] for thread in threads: thread.start() for thread in threads: thread.join() # Gather all threads' outputs and return. outputs = [] for shard_idx in range(len(sample_batches)): output = results[shard_idx] if isinstance(output[0], Exception): raise output[0] from output[1] outputs.append(results[shard_idx]) return outputs