Source code for ray.rllib.env.external_multi_agent_env

import uuid
import gym
from typing import Optional

from ray.rllib.utils.annotations import override, PublicAPI
from ray.rllib.env.external_env import ExternalEnv, _ExternalEnvEpisode
from ray.rllib.utils.types import MultiAgentDict

[docs]@PublicAPI class ExternalMultiAgentEnv(ExternalEnv): """This is the multi-agent version of ExternalEnv.""" @PublicAPI def __init__(self, action_space: gym.Space, observation_space: gym.Space, max_concurrent: int = 100): """Initialize a multi-agent external env. ExternalMultiAgentEnv subclasses must call this during their __init__. Args: action_space (gym.Space): Action space of the env. observation_space (gym.Space): Observation space of the env. max_concurrent (int): Max number of active episodes to allow at once. Exceeding this limit raises an error. """ ExternalEnv.__init__(self, action_space, observation_space, max_concurrent) # we require to know all agents' spaces if isinstance(self.action_space, dict) or isinstance( self.observation_space, dict): if not (self.action_space.keys() == self.observation_space.keys()): raise ValueError("Agent ids disagree for action space and obs " "space dict: {} {}".format( self.action_space.keys(), self.observation_space.keys()))
[docs] @PublicAPI def run(self): """Override this to implement the multi-agent run loop. Your loop should continuously: 1. Call self.start_episode(episode_id) 2. Call self.get_action(episode_id, obs_dict) -or- self.log_action(episode_id, obs_dict, action_dict) 3. Call self.log_returns(episode_id, reward_dict) 4. Call self.end_episode(episode_id, obs_dict) 5. Wait if nothing to do. Multiple episodes may be started at the same time. """ raise NotImplementedError
[docs] @PublicAPI @override(ExternalEnv) def start_episode(self, episode_id: Optional[str] = None, training_enabled: bool = True) -> str: if episode_id is None: episode_id = uuid.uuid4().hex if episode_id in self._finished: raise ValueError( "Episode {} has already completed.".format(episode_id)) if episode_id in self._episodes: raise ValueError( "Episode {} is already started".format(episode_id)) self._episodes[episode_id] = _ExternalEnvEpisode( episode_id, self._results_avail_condition, training_enabled, multiagent=True) return episode_id
[docs] @PublicAPI @override(ExternalEnv) def get_action(self, episode_id: str, observation_dict: MultiAgentDict) -> MultiAgentDict: """Record an observation and get the on-policy action. observation_dict is expected to contain the observation of all agents acting in this episode step. Arguments: episode_id (str): Episode id returned from start_episode(). observation_dict (dict): Current environment observation. Returns: action (dict): Action from the env action space. """ episode = self._get(episode_id) return episode.wait_for_action(observation_dict)
[docs] @PublicAPI @override(ExternalEnv) def log_action(self, episode_id: str, observation_dict: MultiAgentDict, action_dict: MultiAgentDict) -> None: """Record an observation and (off-policy) action taken. Arguments: episode_id (str): Episode id returned from start_episode(). observation_dict (dict): Current environment observation. action_dict (dict): Action for the observation. """ episode = self._get(episode_id) episode.log_action(observation_dict, action_dict)
[docs] @PublicAPI @override(ExternalEnv) def log_returns(self, episode_id: str, reward_dict: MultiAgentDict, info_dict: MultiAgentDict = None, multiagent_done_dict: MultiAgentDict = None) -> None: """Record returns from the environment. The reward will be attributed to the previous action taken by the episode. Rewards accumulate until the next action. If no reward is logged before the next action, a reward of 0.0 is assumed. Arguments: episode_id (str): Episode id returned from start_episode(). reward_dict (dict): Reward from the environment agents. info_dict (dict): Optional info dict. multiagent_done_dict (dict): Optional done dict for agents. """ episode = self._get(episode_id) # accumulate reward by agent # for existing agents, we want to add the reward up for agent, rew in reward_dict.items(): if agent in episode.cur_reward_dict: episode.cur_reward_dict[agent] += rew else: episode.cur_reward_dict[agent] = rew if multiagent_done_dict: for agent, done in multiagent_done_dict.items(): episode.cur_done_dict[agent] = done if info_dict: episode.cur_info_dict = info_dict or {}
[docs] @PublicAPI @override(ExternalEnv) def end_episode(self, episode_id: str, observation_dict: MultiAgentDict) -> None: """Record the end of an episode. Arguments: episode_id (str): Episode id returned from start_episode(). observation_dict (dict): Current environment observation. """ episode = self._get(episode_id) self._finished.add(episode.episode_id) episode.done(observation_dict)