ray.rllib.utils.torch_utils.apply_grad_clipping#
- ray.rllib.utils.torch_utils.apply_grad_clipping(policy: TorchPolicy, optimizer: torch.optim.Optimizer | tf.keras.optimizers.Optimizer, loss: numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor) Dict[str, numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor] [source]#
Applies gradient clipping to already computed grads inside
optimizer
.Note: This function does NOT perform an analogous operation as tf.clip_by_global_norm. It merely clips by norm (per gradient tensor) and then computes the global norm across all given tensors (but without clipping by that global norm).
- Parameters:
policy – The TorchPolicy, which calculated
loss
.optimizer – A local torch optimizer object.
loss – The torch loss tensor.
- Returns:
An info dict containing the “grad_norm” key and the resulting clipped gradients.