ray.rllib.utils.torch_utils.flatten_inputs_to_1d_tensor#
- ray.rllib.utils.torch_utils.flatten_inputs_to_1d_tensor(inputs: numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor | dict | tuple, spaces_struct: gymnasium.spaces.Space | dict | tuple | None = None, time_axis: bool = False) numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor [source]#
Flattens arbitrary input structs according to the given spaces struct.
Returns a single 1D tensor resulting from the different input components’ values.
Thereby: - Boxes (any shape) get flattened to (B, [T]?, -1). Note that image boxes are not treated differently from other types of Boxes and get flattened as well. - Discrete (int) values are one-hot’d, e.g. a batch of [1, 0, 3] (B=3 with Discrete(4) space) results in [[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1]]. - MultiDiscrete values are multi-one-hot’d, e.g. a batch of [[0, 2], [1, 4]] (B=2 with MultiDiscrete([2, 5]) space) results in [[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 0, 1]].
- Parameters:
inputs – The inputs to be flattened.
spaces_struct – The structure of the spaces that behind the input
time_axis – Whether all inputs have a time-axis (after the batch axis). If True, will keep not only the batch axis (0th), but the time axis (1st) as-is and flatten everything from the 2nd axis up.
- Returns:
A single 1D tensor resulting from concatenating all flattened/one-hot’d input components. Depending on the time_axis flag, the shape is (B, n) or (B, T, n).
from gymnasium.spaces import Discrete, Box from ray.rllib.utils.torch_utils import flatten_inputs_to_1d_tensor import torch struct = { "a": np.array([1, 3]), "b": ( np.array([[1.0, 2.0], [4.0, 5.0]]), np.array( [[[8.0], [7.0]], [[5.0], [4.0]]] ), ), "c": { "cb": np.array([1.0, 2.0]), }, } struct_torch = tree.map_structure(lambda s: torch.from_numpy(s), struct) spaces = dict( { "a": gym.spaces.Discrete(4), "b": (gym.spaces.Box(-1.0, 10.0, (2,)), gym.spaces.Box(-1.0, 1.0, (2, 1))), "c": dict( { "cb": gym.spaces.Box(-1.0, 1.0, ()), } ), } ) print(flatten_inputs_to_1d_tensor(struct_torch, spaces_struct=spaces))
tensor([[0., 1., 0., 0., 1., 2., 8., 7., 1.], [0., 0., 0., 1., 4., 5., 5., 4., 2.]])