Transforming Data#
Transformations let you process and modify your dataset. You can compose transformations to express a chain of computations.
Note
Transformations are lazy by default. They aren’t executed until you trigger consumption of the data by iterating over the Dataset, saving the Dataset, or inspecting properties of the Dataset.
This guide shows you how to:
Transforming rows#
Tip
If your transformation is vectorized, call map_batches()
for
better performance. To learn more, see Transforming batches.
Transforming rows with map#
If your transformation returns exactly one row for each input row, call
map()
.
import os
from typing import Any, Dict
import ray
def parse_filename(row: Dict[str, Any]) -> Dict[str, Any]:
row["filename"] = os.path.basename(row["path"])
return row
ds = (
ray.data.read_images("s3://anonymous@ray-example-data/image-datasets/simple", include_paths=True)
.map(parse_filename)
)
The user defined function passed to map()
should be of type
Callable[[Dict[str, Any]], Dict[str, Any]]
. In other words, your function should
input and output a dictionary with keys of strings and values of any type. For example:
from typing import Any, Dict
def fn(row: Dict[str, Any]) -> Dict[str, Any]:
# access row data
value = row["col1"]
# add data to row
row["col2"] = ...
# return row
return row
Transforming rows with flat map#
If your transformation returns multiple rows for each input row, call
flat_map()
.
from typing import Any, Dict, List
import ray
def duplicate_row(row: Dict[str, Any]) -> List[Dict[str, Any]]:
return [row] * 2
print(
ray.data.range(3)
.flat_map(duplicate_row)
.take_all()
)
[{'id': 0}, {'id': 0}, {'id': 1}, {'id': 1}, {'id': 2}, {'id': 2}]
The user defined function passed to flat_map()
should be of type
Callable[[Dict[str, Any]], List[Dict[str, Any]]]
. In other words your function should
input a dictionary with keys of strings and values of any type and output a list of
dictionaries that have the same type as the input, for example:
from typing import Any, Dict, List
def fn(row: Dict[str, Any]) -> List[Dict[str, Any]]:
# access row data
value = row["col1"]
# add data to row
row["col2"] = ...
# construct output list
output = [row, row]
# return list of output rows
return output
Transforming batches#
If your transformation is vectorized like most NumPy or pandas operations, transforming batches is more performant than transforming rows.
from typing import Dict
import numpy as np
import ray
def increase_brightness(batch: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
batch["image"] = np.clip(batch["image"] + 4, 0, 255)
return batch
ds = (
ray.data.read_images("s3://anonymous@ray-example-data/image-datasets/simple")
.map_batches(increase_brightness)
)
Configuring batch format#
Ray Data represents batches as dicts of NumPy ndarrays or pandas DataFrames. By
default, Ray Data represents batches as dicts of NumPy ndarrays. To configure the batch type,
specify batch_format
in map_batches()
. You can return either
format from your function, but batch_format
should match the input of your function.
from typing import Dict
import numpy as np
import ray
def increase_brightness(batch: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
batch["image"] = np.clip(batch["image"] + 4, 0, 255)
return batch
ds = (
ray.data.read_images("s3://anonymous@ray-example-data/image-datasets/simple")
.map_batches(increase_brightness, batch_format="numpy")
)
import pandas as pd
import ray
def drop_nas(batch: pd.DataFrame) -> pd.DataFrame:
return batch.dropna()
ds = (
ray.data.read_csv("s3://anonymous@air-example-data/iris.csv")
.map_batches(drop_nas, batch_format="pandas")
)
The user defined function you pass to map_batches()
is more flexible. Because you can represent batches
in multiple ways (see Configuring batch format), the function should be of type
Callable[DataBatch, DataBatch]
, where DataBatch = Union[pd.DataFrame, Dict[str, np.ndarray]]
. In
other words, your function should take as input and output a batch of data which you can represent as a
pandas DataFrame or a dictionary with string keys and NumPy ndarrays values. For example, your function might look like:
import pandas as pd
def fn(batch: pd.DataFrame) -> pd.DataFrame:
# modify batch
batch = ...
# return batch
return output
The user defined function can also be a Python generator that yields batches, so the function can also
be of type Callable[DataBatch, Iterator[[DataBatch]]
, where DataBatch = Union[pd.DataFrame, Dict[str, np.ndarray]]
.
In this case, your function would look like:
from typing import Dict, Iterator
import numpy as np
def fn(batch: Dict[str, np.ndarray]) -> Iterator[Dict[str, np.ndarray]]:
# yield the same batch multiple times
for _ in range(10):
yield batch
Configuring batch size#
Increasing batch_size
improves the performance of vectorized transformations like
NumPy functions and model inference. However, if your batch size is too large, your
program might run out of memory. If you encounter an out-of-memory error, decrease your
batch_size
.
Stateful Transforms#
If your transform requires expensive setup such as downloading
model weights, use a callable Python class instead of a function to make the transform stateful. When a Python class
is used, the __init__
method is called to perform setup exactly once on each worker.
In contrast, functions are stateless, so any setup must be performed for each data item.
Internally, Ray Data uses tasks to execute functions, and uses actors to execute classes. To learn more about tasks and actors, read the Ray Core Key Concepts.
To transform data with a Python class, complete these steps:
Implement a class. Perform setup in
__init__
and transform data in__call__
.Call
map_batches()
,map()
, orflat_map()
. Pass the number of concurrent workers to use with theconcurrency
argument. Each worker transforms a partition of data in parallel. Fixing the number of concurrent workers gives the most predictable performance, but you can also pass a tuple of(min, max)
to allow Ray Data to automatically scale the number of concurrent workers.
from typing import Dict
import numpy as np
import torch
import ray
class TorchPredictor:
def __init__(self):
self.model = torch.nn.Identity()
self.model.eval()
def __call__(self, batch: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
inputs = torch.as_tensor(batch["data"], dtype=torch.float32)
with torch.inference_mode():
batch["output"] = self.model(inputs).detach().numpy()
return batch
ds = (
ray.data.from_numpy(np.ones((32, 100)))
.map_batches(TorchPredictor, concurrency=2)
)
from typing import Dict
import numpy as np
import torch
import ray
class TorchPredictor:
def __init__(self):
self.model = torch.nn.Identity().cuda()
self.model.eval()
def __call__(self, batch: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
inputs = torch.as_tensor(batch["data"], dtype=torch.float32).cuda()
with torch.inference_mode():
batch["output"] = self.model(inputs).detach().cpu().numpy()
return batch
ds = (
ray.data.from_numpy(np.ones((32, 100)))
.map_batches(
TorchPredictor,
# Two workers with one GPU each
concurrency=2,
# Batch size is required if you're using GPUs.
batch_size=4,
num_gpus=1
)
)
Groupby and transforming groups#
To transform groups, call groupby()
to group rows. Then, call
map_groups()
to transform the groups.
from typing import Dict
import numpy as np
import ray
items = [
{"image": np.zeros((32, 32, 3)), "label": label}
for _ in range(10) for label in range(100)
]
def normalize_images(group: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
group["image"] = (group["image"] - group["image"].mean()) / group["image"].std()
return group
ds = (
ray.data.from_items(items)
.groupby("label")
.map_groups(normalize_images)
)
import pandas as pd
import ray
def normalize_features(group: pd.DataFrame) -> pd.DataFrame:
target = group.drop("target")
group = (group - group.min()) / group.std()
group["target"] = target
return group
ds = (
ray.data.read_csv("s3://anonymous@air-example-data/iris.csv")
.groupby("target")
.map_groups(normalize_features)
)