ray.rllib.policy.eager_tf_policy_v2.EagerTFPolicyV2.action_sampler_fn#
- EagerTFPolicyV2.action_sampler_fn(model: ModelV2, *, obs_batch: numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor, state_batches: numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor, **kwargs) Tuple[numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor, numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor, numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor, List[numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor]] [source]#
Custom function for sampling new actions given policy.
- Parameters:
model – Underlying model.
obs_batch – Observation tensor batch.
state_batches – Action sampling state batch.
- Returns:
Sampled action Log-likelihood Action distribution inputs Updated state