ray.rllib.evaluation.rollout_worker.RolloutWorker.sample_with_count#
- RolloutWorker.sample_with_count() Tuple[SampleBatch | MultiAgentBatch | Dict[str, Any], int] [source]#
Same as sample() but returns the count as a separate value.
- Returns:
- A columnar batch of experiences (e.g., tensors) and the
size of the collected batch.
import gymnasium as gym from ray.rllib.evaluation.rollout_worker import RolloutWorker from ray.rllib.algorithms.ppo.ppo_tf_policy import PPOTF1Policy worker = RolloutWorker( env_creator=lambda _: gym.make("CartPole-v1"), default_policy_class=PPOTFPolicy) print(worker.sample_with_count())
(SampleBatch({"obs": [...], "action": [...], ...}), 3)