Profiling for Ray Developers#
This guide helps contributors to the Ray project analyze Ray performance.
Getting a stack trace of Ray C++ processes#
You can use the following GDB command to view the current stack trace of any running Ray process (e.g., raylet). This can be useful for debugging 100% CPU utilization or infinite loops (simply run the command a few times to see what the process is stuck on).
sudo gdb -batch -ex "thread apply all bt" -p <pid>
Note that you can find the pid of the raylet with pgrep raylet
.
Installation#
These instructions are for Ubuntu only. Attempts to get pprof
to correctly
symbolize on Mac OS have failed.
sudo apt-get install google-perftools libgoogle-perftools-dev
You may need to install graphviz
for pprof
to generate flame graphs.
sudo apt-get install graphviz
CPU profiling#
To launch Ray in profiling mode and profile Raylet, define the following variables:
export PERFTOOLS_PATH=/usr/lib/x86_64-linux-gnu/libprofiler.so
export PERFTOOLS_LOGFILE=/tmp/pprof.out
export RAY_RAYLET_PERFTOOLS_PROFILER=1
The file /tmp/pprof.out
is empty until you let the binary run the
target workload for a while and then kill
it via ray stop
or by
letting the driver exit.
Note: Enabling RAY_RAYLET_PERFTOOLS_PROFILER
allows profiling of the Raylet component.
To profile other modules, use RAY_{MODULE}_PERFTOOLS_PROFILER
,
where MODULE
represents the uppercase form of the process type, such as GCS_SERVER
.
Visualizing the CPU profile#
You can visualize the output of pprof
in different ways. Below, the output is a
zoomable .svg
image displaying the call graph annotated with hot paths.
# Use the appropriate path.
RAYLET=ray/python/ray/core/src/ray/raylet/raylet
google-pprof -svg $RAYLET /tmp/pprof.out > /tmp/pprof.svg
# Then open the .svg file with Chrome.
# If you realize the call graph is too large, use -focus=<some function> to zoom
# into subtrees.
google-pprof -focus=epoll_wait -svg $RAYLET /tmp/pprof.out > /tmp/pprof.svg
Below is a snapshot of an example SVG output, from the official documentation:
Memory profiling#
To run memory profiling on Ray core components, use Jemalloc (jemalloc/jemalloc). Ray supports environment variables to override LD_PRELOAD on core components.
You can find the component name from ray_constants.py
. For example, if you’d like to profile gcs_server,
search PROCESS_TYPE_GCS_SERVER
in ray_constants.py
. You can see the value is gcs_server
.
Users are supposed to provide 3 env vars for memory profiling.
RAY_JEMALLOC_LIB_PATH: The path to the jemalloc shared library
.so
.RAY_JEMALLOC_CONF: The MALLOC_CONF of jemalloc (comma separated).
RAY_JEMALLOC_PROFILE: Comma separated Ray components to run Jemalloc
.so
. e.g., (“raylet,gcs_server”). Note that the components should match the process type inray_constants.py
. (It means “RAYLET,GCS_SERVER” won’t work).
# Install jemalloc
wget https://github.com/jemalloc/jemalloc/releases/download/5.2.1/jemalloc-5.2.1.tar.bz2
tar -xf jemalloc-5.2.1.tar.bz2
cd jemalloc-5.2.1
./configure --enable-prof --enable-prof-libunwind
make
make install
# Set jemalloc configs through MALLOC_CONF env variable.
# Read http://jemalloc.net/jemalloc.3.html#opt.lg_prof_interval.
# for all jemalloc configs
# Ray start will profile the GCS server component.
RAY_JEMALLOC_CONF=prof:true,lg_prof_interval:33,lg_prof_sample:17,prof_final:true,prof_leak:true \
RAY_JEMALLOC_LIB_PATH=~/jemalloc-5.2.1/lib/libjemalloc.so \
RAY_JEMALLOC_PROFILE=gcs_server \
ray start --head
# You should see the following logs.
2021-10-20 19:45:08,175 INFO services.py:622 -- Jemalloc profiling will be used for gcs_server. env vars: {'LD_PRELOAD': '/Users/sangbincho/jemalloc-5.2.1/lib/libjemalloc.so', 'MALLOC_CONF': 'prof:true,lg_prof_interval:33,lg_prof_sample:17,prof_final:true,prof_leak:true'}
Visualizing the memory profile#
The output files are at the path where you call “ray start”. For the example of profile file “jeprof.15786.0.f.heap”, use following commands to generate the .svg plot.
# Use the appropriate path.
RAYLET=ray/python/ray/core/src/ray/raylet/raylet
sudo jeprof $RAYLET jeprof.15786.0.f.heap --svg > /tmp/prof.svg
# Then open the .svg file with Chrome.
Running microbenchmarks#
To run a set of single-node Ray microbenchmarks, use:
ray microbenchmark
You can find the microbenchmark results for Ray releases in the GitHub release logs.
References#
The pprof documentation.
The gperftools, including libprofiler, tcmalloc, and other useful tools.