How to write code snippets#
Users learn from example. So, whether you’re writing a docstring or a user guide, include examples that illustrate the relevant APIs. Your examples should run out-of-the-box so that users can copy them and adapt them to their own needs.
This page describes how to write code snippets so that they’re tested in CI.
Note
The examples in this guide use reStructuredText. If you’re writing Markdown, use MyST syntax. To learn more, read the MyST documentation.
Types of examples#
There are three types of examples: doctest-style, code-output-style, and literalinclude.
doctest-style examples#
doctest-style examples mimic interactive Python sessions.
.. doctest::
>>> def is_even(x):
... return (x % 2) == 0
>>> is_even(0)
True
>>> is_even(1)
False
They’re rendered like this:
>>> def is_even(x):
... return (x % 2) == 0
>>> is_even(0)
True
>>> is_even(1)
False
Tip
If you’re writing docstrings, exclude .. doctest::
to simplify your code.
Example:
>>> def is_even(x):
... return (x % 2) == 0
>>> is_even(0)
True
>>> is_even(1)
False
code-output-style examples#
code-output-style examples contain ordinary Python code.
.. testcode::
def is_even(x):
return (x % 2) == 0
print(is_even(0))
print(is_even(1))
.. testoutput::
True
False
They’re rendered like this:
def is_even(x):
return (x % 2) == 0
print(is_even(0))
print(is_even(1))
True
False
literalinclude examples#
literalinclude examples display Python modules.
.. literalinclude:: ./doc_code/example_module.py
:language: python
:start-after: __is_even_begin__
:end-before: __is_even_end__
# example_module.py
# fmt: off
# __is_even_begin__
def is_even(x):
return (x % 2) == 0
# __is_even_end__
# fmt: on
They’re rendered like this:
def is_even(x):
return (x % 2) == 0
Which type of example should you write?#
There’s no hard rule about which style you should use. Choose the style that best illustrates your API.
Tip
If you’re not sure which style to use, use code-block-style.
When to use doctest-style#
If you’re writing a small example that emphasizes object representations, or if you want to print intermediate objects, use doctest-style.
.. doctest::
>>> import ray
>>> ds = ray.data.range(100)
>>> ds.schema()
Column Type
------ ----
id int64
>>> ds.take(5)
[{'id': 0}, {'id': 1}, {'id': 2}, {'id': 3}, {'id': 4}]
When to use code-block-style#
If you’re writing a longer example, or if object representations aren’t relevant to your example, use code-block-style.
.. testcode::
from typing import Dict
import numpy as np
import ray
ds = ray.data.read_csv("s3://anonymous@air-example-data/iris.csv")
# Compute a "petal area" attribute.
def transform_batch(batch: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
vec_a = batch["petal length (cm)"]
vec_b = batch["petal width (cm)"]
batch["petal area (cm^2)"] = vec_a * vec_b
return batch
transformed_ds = ds.map_batches(transform_batch)
print(transformed_ds.materialize())
.. testoutput::
MaterializedDataset(
num_blocks=...,
num_rows=150,
schema={
sepal length (cm): double,
sepal width (cm): double,
petal length (cm): double,
petal width (cm): double,
target: int64,
petal area (cm^2): double
}
)
When to use literalinclude#
If you’re writing an end-to-end examples and your examples doesn’t contain outputs, use literalinclude.
How to handle hard-to-test examples#
When is it okay to not test an example?#
You don’t need to test examples that depend on external systems like Weights and Biases.
Skipping doctest-style examples#
To skip a doctest-style example, append # doctest: +SKIP
to your Python code.
.. doctest::
>>> import ray
>>> ray.data.read_images("s3://private-bucket") # doctest: +SKIP
Skipping code-block-style examples#
To skip a code-block-style example, add :skipif: True
to the testoutput
block.
.. testcode::
:skipif: True
from ray.air.integrations.wandb import WandbLoggerCallback
callback = WandbLoggerCallback(
project="Optimization_Project",
api_key_file=...,
log_config=True
)
How to handle long or non-determnistic outputs#
If your Python code is non-deterministic, or if your output is excessively long, you may want to skip all or part of an output.
Ignoring doctest-style outputs#
To ignore parts of a doctest-style output, replace problematic sections with ellipses.
>>> import ray
>>> ray.data.read_images("s3://anonymous@ray-example-data/image-datasets/simple")
Dataset(
num_rows=...,
schema={image: numpy.ndarray(shape=(32, 32, 3), dtype=uint8)}
)
To ignore an output altogether, write a code-block-style snippet. Don’t use # doctest: +SKIP
.
Ignoring code-block-style outputs#
If parts of your output are long or non-deterministic, replace problematic sections with ellipses.
.. testcode::
import ray
ds = ray.data.read_images("s3://anonymous@ray-example-data/image-datasets/simple")
print(ds)
.. testoutput::
Dataset(
num_rows=...,
schema={image: numpy.ndarray(shape=(32, 32, 3), dtype=uint8)}
)
If your output is nondeterministic and you want to display a sample output, add
:options: +MOCK
.
.. testcode::
import random
print(random.random())
.. testoutput::
:options: +MOCK
0.969461416250246
If your output is hard to test and you don’t want to display a sample output, exclude
the testoutput
.
.. testcode::
print("This output is hidden and untested")
How to test examples with GPUs#
To configure Bazel to run an example with GPUs, complete the following steps:
Open the corresponding
BUILD
file. If your example is in thedoc/
folder, opendoc/BUILD
. If your example is in thepython/
folder, open a file likepython/ray/train/BUILD
.Locate the
doctest
rule. It looks like this:doctest( files = glob( include=["source/**/*.rst"], ), size = "large", tags = ["team:none"] )
Add the file that contains your example to the list of excluded files.
doctest( files = glob( include=["source/**/*.rst"], exclude=["source/data/requires-gpus.rst"] ), tags = ["team:none"] )
If it doesn’t already exist, create a
doctest
rule withgpu
set toTrue
.doctest( files = [], tags = ["team:none"], gpu = True )
Add the file that contains your example to the GPU rule.
doctest( files = ["source/data/requires-gpus.rst"] size = "large", tags = ["team:none"], gpu = True )
For a practical example, see doc/BUILD
or python/ray/train/BUILD
.
How to locally test examples#
To locally test examples, install the Ray fork of pytest-sphinx
.
pip install git+https://github.com/ray-project/pytest-sphinx
Then, run pytest on a module, docstring, or user guide.
pytest --doctest-modules python/ray/data/read_api.py
pytest --doctest-modules python/ray/data/read_api.py::ray.data.read_api.range
pytest --doctest-modules doc/source/data/getting-started.rst