ray.rllib.utils.tf_utils.explained_variance#
- ray.rllib.utils.tf_utils.explained_variance(y: numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor, pred: numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor) numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor [source]#
Computes the explained variance for a pair of labels and predictions.
The formula used is: max(-1.0, 1.0 - (std(y - pred)^2 / std(y)^2))
- Parameters:
y – The labels.
pred – The predictions.
- Returns:
The explained variance given a pair of labels and predictions.