ray.rllib.utils.schedules.piecewise_schedule.PiecewiseSchedule.__init__#
- PiecewiseSchedule.__init__(endpoints: ~typing.List[~typing.Tuple[int, float]], framework: str | None = None, interpolation: ~typing.Callable[[numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor, numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor, numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor], numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor] = <function _linear_interpolation>, outside_value: float | None = None)[source]#
Initializes a PiecewiseSchedule instance.
- Parameters:
endpoints – A list of tuples
(t, value)
such that the output is an interpolation (given by theinterpolation
callable) between two values. E.g. t=400 and endpoints=[(0, 20.0),(500, 30.0)] output=20.0 + 0.8 * (30.0 - 20.0) = 28.0 NOTE: All the values for time must be sorted in an increasing order.framework – The framework descriptor string, e.g. “tf”, “torch”, or None.
interpolation – A function that takes the left-value, the right-value and an alpha interpolation parameter (0.0=only left value, 1.0=only right value), which is the fraction of distance from left endpoint to right endpoint.
outside_value – If t in call to
value
is outside of all the intervals inendpoints
this value is returned. If None then an AssertionError is raised when outside value is requested.