ray.rllib.offline.input_reader.InputReader.tf_input_ops#
- InputReader.tf_input_ops(queue_size: int = 1) Dict[str, numpy.array | jnp.ndarray | tf.Tensor | torch.Tensor] [source]#
Returns TensorFlow queue ops for reading inputs from this reader.
The main use of these ops is for integration into custom model losses. For example, you can use tf_input_ops() to read from files of external experiences to add an imitation learning loss to your model.
This method creates a queue runner thread that will call next() on this reader repeatedly to feed the TensorFlow queue.
- Parameters:
queue_size – Max elements to allow in the TF queue.
from ray.rllib.models.modelv2 import ModelV2 from ray.rllib.offline.json_reader import JsonReader imitation_loss = ... class MyModel(ModelV2): def custom_loss(self, policy_loss, loss_inputs): reader = JsonReader(...) input_ops = reader.tf_input_ops() logits, _ = self._build_layers_v2( {"obs": input_ops["obs"]}, self.num_outputs, self.options) il_loss = imitation_loss(logits, input_ops["action"]) return policy_loss + il_loss
You can find a runnable version of this in examples/custom_loss.py.
- Returns:
Dict of Tensors, one for each column of the read SampleBatch.