Source code for ray.rllib.utils.schedules.schedule
from abc import ABCMeta, abstractmethod
from typing import Any, Union
from ray.rllib.utils.annotations import OldAPIStack
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.typing import TensorType
tf1, tf, tfv = try_import_tf()
[docs]
@OldAPIStack
class Schedule(metaclass=ABCMeta):
"""Schedule classes implement various time-dependent scheduling schemas.
- Constant behavior.
- Linear decay.
- Piecewise decay.
- Exponential decay.
Useful for backend-agnostic rate/weight changes for learning rates,
exploration epsilons, beta parameters for prioritized replay, loss weights
decay, etc..
Each schedule can be called directly with the `t` (absolute time step)
value and returns the value dependent on the Schedule and the passed time.
"""
def __init__(self, framework):
self.framework = framework
[docs]
def value(self, t: Union[int, TensorType]) -> Any:
"""Generates the value given a timestep (based on schedule's logic).
Args:
t: The time step. This could be a tf.Tensor.
Returns:
The calculated value depending on the schedule and `t`.
"""
if self.framework in ["tf2", "tf"]:
return self._tf_value_op(t)
return self._value(t)
[docs]
def __call__(self, t: Union[int, TensorType]) -> Any:
"""Simply calls self.value(t). Implemented to make Schedules callable."""
return self.value(t)
@abstractmethod
def _value(self, t: Union[int, TensorType]) -> Any:
"""
Returns the value based on a time step input.
Args:
t: The time step. This could be a tf.Tensor.
Returns:
The calculated value depending on the schedule and `t`.
"""
raise NotImplementedError
def _tf_value_op(self, t: TensorType) -> TensorType:
"""
Returns the tf-op that calculates the value based on a time step input.
Args:
t: The time step op (int tf.Tensor).
Returns:
The calculated value depending on the schedule and `t`.
"""
# By default (most of the time), tf should work with python code.
# Override only if necessary.
return self._value(t)