Source code for ray.rllib.offline.json_reader

import glob
import json
import logging
import math

import numpy as np
import os
from pathlib import Path
import random
import re
import tree  # pip install dm_tree
from typing import List, Optional, TYPE_CHECKING, Union
from urllib.parse import urlparse
import zipfile

try:
    from smart_open import smart_open
except ImportError:
    smart_open = None

from ray.rllib.offline.input_reader import InputReader
from ray.rllib.offline.io_context import IOContext
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.sample_batch import (
    DEFAULT_POLICY_ID,
    MultiAgentBatch,
    SampleBatch,
    concat_samples,
    convert_ma_batch_to_sample_batch,
)
from ray.rllib.utils.annotations import override, PublicAPI, DeveloperAPI
from ray.rllib.utils.compression import unpack_if_needed
from ray.rllib.utils.spaces.space_utils import clip_action, normalize_action
from ray.rllib.utils.typing import Any, FileType, SampleBatchType

if TYPE_CHECKING:
    from ray.rllib.evaluation import RolloutWorker

logger = logging.getLogger(__name__)

WINDOWS_DRIVES = [chr(i) for i in range(ord("c"), ord("z") + 1)]


def _adjust_obs_actions_for_policy(json_data: dict, policy: Policy) -> dict:
    """Handle nested action/observation spaces for policies.

    Translates nested lists/dicts from the json into proper
    np.ndarrays, according to the (nested) observation- and action-
    spaces of the given policy.

    Providing nested lists w/o this preprocessing step would
    confuse a SampleBatch constructor.
    """
    for k, v in json_data.items():
        data_col = (
            policy.view_requirements[k].data_col
            if k in policy.view_requirements
            else ""
        )
        # No action flattening -> Process nested (leaf) action(s).
        if policy.config.get("_disable_action_flattening") and (
            k == SampleBatch.ACTIONS
            or data_col == SampleBatch.ACTIONS
            or k == SampleBatch.PREV_ACTIONS
            or data_col == SampleBatch.PREV_ACTIONS
        ):
            json_data[k] = tree.map_structure_up_to(
                policy.action_space_struct,
                lambda comp: np.array(comp),
                json_data[k],
                check_types=False,
            )
        # No preprocessing -> Process nested (leaf) observation(s).
        elif policy.config.get("_disable_preprocessor_api") and (
            k == SampleBatch.OBS
            or data_col == SampleBatch.OBS
            or k == SampleBatch.NEXT_OBS
            or data_col == SampleBatch.NEXT_OBS
        ):
            json_data[k] = tree.map_structure_up_to(
                policy.observation_space_struct,
                lambda comp: np.array(comp),
                json_data[k],
                check_types=False,
            )
    return json_data


@DeveloperAPI
def _adjust_dones(json_data: dict) -> dict:
    """Make sure DONES in json data is properly translated into TERMINATEDS."""
    new_json_data = {}
    for k, v in json_data.items():
        # Translate DONES into TERMINATEDS.
        if k == SampleBatch.DONES:
            new_json_data[SampleBatch.TERMINATEDS] = v
        # Leave everything else as-is.
        else:
            new_json_data[k] = v

    return new_json_data


@DeveloperAPI
def postprocess_actions(batch: SampleBatchType, ioctx: IOContext) -> SampleBatchType:
    # Clip actions (from any values into env's bounds), if necessary.
    cfg = ioctx.config
    # TODO(jungong): We should not clip_action in input reader.
    #  Use connector to handle this.
    if cfg.get("clip_actions"):
        if ioctx.worker is None:
            raise ValueError(
                "clip_actions is True but cannot clip actions since no workers exist"
            )

        if isinstance(batch, SampleBatch):
            policy = ioctx.worker.policy_map.get(DEFAULT_POLICY_ID)
            if policy is None:
                assert len(ioctx.worker.policy_map) == 1
                policy = next(iter(ioctx.worker.policy_map.values()))
            batch[SampleBatch.ACTIONS] = clip_action(
                batch[SampleBatch.ACTIONS], policy.action_space_struct
            )
        else:
            for pid, b in batch.policy_batches.items():
                b[SampleBatch.ACTIONS] = clip_action(
                    b[SampleBatch.ACTIONS],
                    ioctx.worker.policy_map[pid].action_space_struct,
                )
    # Re-normalize actions (from env's bounds to zero-centered), if
    # necessary.
    if (
        cfg.get("actions_in_input_normalized") is False
        and cfg.get("normalize_actions") is True
    ):
        if ioctx.worker is None:
            raise ValueError(
                "actions_in_input_normalized is False but"
                "cannot normalize actions since no workers exist"
            )

        # If we have a complex action space and actions were flattened
        # and we have to normalize -> Error.
        error_msg = (
            "Normalization of offline actions that are flattened is not "
            "supported! Make sure that you record actions into offline "
            "file with the `_disable_action_flattening=True` flag OR "
            "as already normalized (between -1.0 and 1.0) values. "
            "Also, when reading already normalized action values from "
            "offline files, make sure to set "
            "`actions_in_input_normalized=True` so that RLlib will not "
            "perform normalization on top."
        )

        if isinstance(batch, SampleBatch):
            policy = ioctx.worker.policy_map.get(DEFAULT_POLICY_ID)
            if policy is None:
                assert len(ioctx.worker.policy_map) == 1
                policy = next(iter(ioctx.worker.policy_map.values()))
            if isinstance(
                policy.action_space_struct, (tuple, dict)
            ) and not policy.config.get("_disable_action_flattening"):
                raise ValueError(error_msg)
            batch[SampleBatch.ACTIONS] = normalize_action(
                batch[SampleBatch.ACTIONS], policy.action_space_struct
            )
        else:
            for pid, b in batch.policy_batches.items():
                policy = ioctx.worker.policy_map[pid]
                if isinstance(
                    policy.action_space_struct, (tuple, dict)
                ) and not policy.config.get("_disable_action_flattening"):
                    raise ValueError(error_msg)
                b[SampleBatch.ACTIONS] = normalize_action(
                    b[SampleBatch.ACTIONS],
                    ioctx.worker.policy_map[pid].action_space_struct,
                )

    return batch


@DeveloperAPI
def from_json_data(json_data: Any, worker: Optional["RolloutWorker"]):
    # Try to infer the SampleBatchType (SampleBatch or MultiAgentBatch).
    if "type" in json_data:
        data_type = json_data.pop("type")
    else:
        raise ValueError("JSON record missing 'type' field")

    if data_type == "SampleBatch":
        if worker is not None and len(worker.policy_map) != 1:
            raise ValueError(
                "Found single-agent SampleBatch in input file, but our "
                "PolicyMap contains more than 1 policy!"
            )
        for k, v in json_data.items():
            json_data[k] = unpack_if_needed(v)
        if worker is not None:
            policy = next(iter(worker.policy_map.values()))
            json_data = _adjust_obs_actions_for_policy(json_data, policy)
        json_data = _adjust_dones(json_data)
        return SampleBatch(json_data)
    elif data_type == "MultiAgentBatch":
        policy_batches = {}
        for policy_id, policy_batch in json_data["policy_batches"].items():
            inner = {}
            for k, v in policy_batch.items():
                # Translate DONES into TERMINATEDS.
                if k == SampleBatch.DONES:
                    k = SampleBatch.TERMINATEDS
                inner[k] = unpack_if_needed(v)
            if worker is not None:
                policy = worker.policy_map[policy_id]
                inner = _adjust_obs_actions_for_policy(inner, policy)
            inner = _adjust_dones(inner)
            policy_batches[policy_id] = SampleBatch(inner)
        return MultiAgentBatch(policy_batches, json_data["count"])
    else:
        raise ValueError(
            "Type field must be one of ['SampleBatch', 'MultiAgentBatch']", data_type
        )


# TODO(jungong) : use DatasetReader to back JsonReader, so we reduce
#     codebase complexity without losing existing functionality.
[docs] @PublicAPI class JsonReader(InputReader): """Reader object that loads experiences from JSON file chunks. The input files will be read from in random order. """
[docs] @PublicAPI def __init__( self, inputs: Union[str, List[str]], ioctx: Optional[IOContext] = None ): """Initializes a JsonReader instance. Args: inputs: Either a glob expression for files, e.g. `/tmp/**/*.json`, or a list of single file paths or URIs, e.g., ["s3://bucket/file.json", "s3://bucket/file2.json"]. ioctx: Current IO context object or None. """ logger.info( "You are using JSONReader. It is recommended to use " + "DatasetReader instead for better sharding support." ) self.ioctx = ioctx or IOContext() self.default_policy = self.policy_map = None self.batch_size = 1 if self.ioctx: self.batch_size = self.ioctx.config.get("train_batch_size", 1) num_workers = self.ioctx.config.get("num_env_runners", 0) if num_workers: self.batch_size = max(math.ceil(self.batch_size / num_workers), 1) if self.ioctx.worker is not None: self.policy_map = self.ioctx.worker.policy_map self.default_policy = self.policy_map.get(DEFAULT_POLICY_ID) if self.default_policy is None: assert len(self.policy_map) == 1 self.default_policy = next(iter(self.policy_map.values())) if isinstance(inputs, str): inputs = os.path.abspath(os.path.expanduser(inputs)) if os.path.isdir(inputs): inputs = [os.path.join(inputs, "*.json"), os.path.join(inputs, "*.zip")] logger.warning(f"Treating input directory as glob patterns: {inputs}") else: inputs = [inputs] if any(urlparse(i).scheme not in [""] + WINDOWS_DRIVES for i in inputs): raise ValueError( "Don't know how to glob over `{}`, ".format(inputs) + "please specify a list of files to read instead." ) else: self.files = [] for i in inputs: self.files.extend(glob.glob(i)) elif isinstance(inputs, (list, tuple)): self.files = list(inputs) else: raise ValueError( "type of inputs must be list or str, not {}".format(inputs) ) if self.files: logger.info("Found {} input files.".format(len(self.files))) else: raise ValueError("No files found matching {}".format(inputs)) self.cur_file = None
@override(InputReader) def next(self) -> SampleBatchType: ret = [] count = 0 while count < self.batch_size: batch = self._try_parse(self._next_line()) tries = 0 while not batch and tries < 100: tries += 1 logger.debug("Skipping empty line in {}".format(self.cur_file)) batch = self._try_parse(self._next_line()) if not batch: raise ValueError( "Failed to read valid experience batch from file: {}".format( self.cur_file ) ) batch = self._postprocess_if_needed(batch) count += batch.count ret.append(batch) ret = concat_samples(ret) return ret
[docs] def read_all_files(self) -> SampleBatchType: """Reads through all files and yields one SampleBatchType per line. When reaching the end of the last file, will start from the beginning again. Yields: One SampleBatch or MultiAgentBatch per line in all input files. """ for path in self.files: file = self._try_open_file(path) while True: line = file.readline() if not line: break batch = self._try_parse(line) if batch is None: break yield batch
def _postprocess_if_needed(self, batch: SampleBatchType) -> SampleBatchType: if not self.ioctx.config.get("postprocess_inputs"): return batch batch = convert_ma_batch_to_sample_batch(batch) if isinstance(batch, SampleBatch): out = [] for sub_batch in batch.split_by_episode(): out.append(self.default_policy.postprocess_trajectory(sub_batch)) return concat_samples(out) else: # TODO(ekl) this is trickier since the alignments between agent # trajectories in the episode are not available any more. raise NotImplementedError( "Postprocessing of multi-agent data not implemented yet." ) def _try_open_file(self, path): if urlparse(path).scheme not in [""] + WINDOWS_DRIVES: if smart_open is None: raise ValueError( "You must install the `smart_open` module to read " "from URIs like {}".format(path) ) ctx = smart_open else: # Allow shortcut for home directory ("~/" -> env[HOME]). if path.startswith("~/"): path = os.path.join(os.environ.get("HOME", ""), path[2:]) # If path doesn't exist, try to interpret is as relative to the # rllib directory (located ../../ from this very module). path_orig = path if not os.path.exists(path): path = os.path.join(Path(__file__).parent.parent, path) if not os.path.exists(path): raise FileNotFoundError(f"Offline file {path_orig} not found!") # Unzip files, if necessary and re-point to extracted json file. if re.search("\\.zip$", path): with zipfile.ZipFile(path, "r") as zip_ref: zip_ref.extractall(Path(path).parent) path = re.sub("\\.zip$", ".json", path) assert os.path.exists(path) ctx = open file = ctx(path, "r") return file def _try_parse(self, line: str) -> Optional[SampleBatchType]: line = line.strip() if not line: return None try: batch = self._from_json(line) except Exception: logger.exception( "Ignoring corrupt json record in {}: {}".format(self.cur_file, line) ) return None batch = postprocess_actions(batch, self.ioctx) return batch def _next_line(self) -> str: if not self.cur_file: self.cur_file = self._next_file() line = self.cur_file.readline() tries = 0 while not line and tries < 100: tries += 1 if hasattr(self.cur_file, "close"): # legacy smart_open impls self.cur_file.close() self.cur_file = self._next_file() line = self.cur_file.readline() if not line: logger.debug("Ignoring empty file {}".format(self.cur_file)) if not line: raise ValueError( "Failed to read next line from files: {}".format(self.files) ) return line def _next_file(self) -> FileType: # If this is the first time, we open a file, make sure all workers # start with a different one if possible. if self.cur_file is None and self.ioctx.worker is not None: idx = self.ioctx.worker.worker_index total = self.ioctx.worker.num_workers or 1 path = self.files[round((len(self.files) - 1) * (idx / total))] # After the first file, pick all others randomly. else: path = random.choice(self.files) return self._try_open_file(path) def _from_json(self, data: str) -> SampleBatchType: if isinstance(data, bytes): # smart_open S3 doesn't respect "r" data = data.decode("utf-8") json_data = json.loads(data) return from_json_data(json_data, self.ioctx.worker)