Serve a Large Language Model with vLLM#
This example runs a large language model with Ray Serve using vLLM, a popular open-source library for serving LLMs. It uses the OpenAI Chat Completions API, which easily integrates with other LLM tools. The example also sets up multi-GPU serving with Ray Serve using placement groups. For more advanced features like multi-lora support with serve multiplexing, JSON mode function calling and further performance improvements, try LLM deployment solutions on Anyscale.
To run this example, install the following:
pip install "ray[serve]" requests vllm
This example uses the NousResearch/Meta-Llama-3-8B-Instruct model. Save the following code to a file named llm.py
.
The Serve code is as follows:
from typing import Dict, Optional, List
import logging
from fastapi import FastAPI
from starlette.requests import Request
from starlette.responses import StreamingResponse, JSONResponse
from ray import serve
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.openai.cli_args import make_arg_parser
from vllm.entrypoints.openai.protocol import (
ChatCompletionRequest,
ChatCompletionResponse,
ErrorResponse,
)
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.serving_engine import LoRAModulePath
from vllm.utils import FlexibleArgumentParser
logger = logging.getLogger("ray.serve")
app = FastAPI()
@serve.deployment(
autoscaling_config={
"min_replicas": 1,
"max_replicas": 10,
"target_ongoing_requests": 5,
},
max_ongoing_requests=10,
)
@serve.ingress(app)
class VLLMDeployment:
def __init__(
self,
engine_args: AsyncEngineArgs,
response_role: str,
lora_modules: Optional[List[LoRAModulePath]] = None,
chat_template: Optional[str] = None,
):
logger.info(f"Starting with engine args: {engine_args}")
self.openai_serving_chat = None
self.engine_args = engine_args
self.response_role = response_role
self.lora_modules = lora_modules
self.chat_template = chat_template
self.engine = AsyncLLMEngine.from_engine_args(engine_args)
@app.post("/v1/chat/completions")
async def create_chat_completion(
self, request: ChatCompletionRequest, raw_request: Request
):
"""OpenAI-compatible HTTP endpoint.
API reference:
- https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html
"""
if not self.openai_serving_chat:
model_config = await self.engine.get_model_config()
# Determine the name of the served model for the OpenAI client.
if self.engine_args.served_model_name is not None:
served_model_names = self.engine_args.served_model_name
else:
served_model_names = [self.engine_args.model]
self.openai_serving_chat = OpenAIServingChat(
self.engine,
model_config,
served_model_names,
self.response_role,
self.lora_modules,
self.chat_template,
)
logger.info(f"Request: {request}")
generator = await self.openai_serving_chat.create_chat_completion(
request, raw_request
)
if isinstance(generator, ErrorResponse):
return JSONResponse(
content=generator.model_dump(), status_code=generator.code
)
if request.stream:
return StreamingResponse(content=generator, media_type="text/event-stream")
else:
assert isinstance(generator, ChatCompletionResponse)
return JSONResponse(content=generator.model_dump())
def parse_vllm_args(cli_args: Dict[str, str]):
"""Parses vLLM args based on CLI inputs.
Currently uses argparse because vLLM doesn't expose Python models for all of the
config options we want to support.
"""
arg_parser = FlexibleArgumentParser(
description="vLLM OpenAI-Compatible RESTful API server."
)
parser = make_arg_parser(arg_parser)
arg_strings = []
for key, value in cli_args.items():
arg_strings.extend([f"--{key}", str(value)])
logger.info(arg_strings)
parsed_args = parser.parse_args(args=arg_strings)
return parsed_args
def build_app(cli_args: Dict[str, str]) -> serve.Application:
"""Builds the Serve app based on CLI arguments.
See https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#command-line-arguments-for-the-server
for the complete set of arguments.
Supported engine arguments: https://docs.vllm.ai/en/latest/models/engine_args.html.
""" # noqa: E501
parsed_args = parse_vllm_args(cli_args)
engine_args = AsyncEngineArgs.from_cli_args(parsed_args)
engine_args.worker_use_ray = True
tp = engine_args.tensor_parallel_size
logger.info(f"Tensor parallelism = {tp}")
pg_resources = []
pg_resources.append({"CPU": 1}) # for the deployment replica
for i in range(tp):
pg_resources.append({"CPU": 1, "GPU": 1}) # for the vLLM actors
# We use the "STRICT_PACK" strategy below to ensure all vLLM actors are placed on
# the same Ray node.
return VLLMDeployment.options(
placement_group_bundles=pg_resources, placement_group_strategy="STRICT_PACK"
).bind(
engine_args,
parsed_args.response_role,
parsed_args.lora_modules,
parsed_args.chat_template,
)
Use serve run llm:build_app model="NousResearch/Meta-Llama-3-8B-Instruct" tensor-parallel-size=2
to start the Serve app.
Note
This example uses Tensor Parallel size of 2, which means Ray Serve deploys the model to Ray Actors across 2 GPUs using placement groups.
Use the following code to send requests:
from openai import OpenAI
# Note: Ray Serve doesn't support all OpenAI client arguments and may ignore some.
client = OpenAI(
# Replace the URL if deploying your app remotely
# (e.g., on Anyscale or KubeRay).
base_url="http://localhost:8000/v1",
api_key="NOT A REAL KEY",
)
chat_completion = client.chat.completions.create(
model="NousResearch/Meta-Llama-3-8B-Instruct",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "What are some highly rated restaurants in San Francisco?'",
},
],
temperature=0.01,
stream=True,
)
for chat in chat_completion:
if chat.choices[0].delta.content is not None:
print(chat.choices[0].delta.content, end="")